
The ANML Guide

Cameron Kiddle

TeleSim Group
Department of Computer Science

University of Calgary

December 20, 2002

Contents

Contents iv

1 Introduction 1
1.1 Origin . 1
1.2 Notation . 1
1.3 Document Layout 2

2 Tutorial: How to Define an ANML Schema 3
2.1 Step 1 - Establish the General Structure of What is to be Modelled 3
2.2 Step 2 - Write the Schema . 4

2.2.1 Defining a Class . 5
2.2.1.1 Declaring a Valid Sub-Component 6
2.2.1.2 Defining a Class Attribute . 7
2.2.1.3 Assigning a Default Attribute Value . 8

2.2.2 Declaring a Valid Top Level Component . .. 8

3 Tutorial: How to Create an ANML Model 9
3.1 Step 1 - Decide What to Model . 9
3.2 Step 2 - Break the Model Down into Individual Components 9
3.3 Step 3 - Define Components Needed by the Model in a Database 9
3.4 Step 4 - Define the Model . 16

4 A Formal Definition of ANML 19
4.1 ANML Syntax . 19
4.2 Well-Formedness and Validity . 20
4.3 Model and Key-Value Pairs . 20
4.4 Keys . 20

4.4.1 Component Keys 21
4.4.1.1 Component Definitions 21
4.4.1.2 Component Instances 21

4.4.2 Attribute Keys . 22
4.4.3 Reserved Keys . 22

4.4.3.1 CLASS KEY . 22
4.4.3.2 DATABASE KEY . 23
4.4.3.3 FROM KEY . 23
4.4.3.4 ID KEY . 23
4.4.3.5 IN DATABASE KEY . 24
4.4.3.6 INCLUDE KEY . 24
4.4.3.7 MODEL KEY . 25
4.4.3.8 NAME KEY . 25
4.4.3.9 TO KEY . 25
4.4.3.10 USE SCHEMA KEY . 26

4.5 Values . 26
4.6 Comments . 27
4.7 Identification System . 27

5 A Formal Definition of the ANML Schema 29
5.1 ANML Schema Syntax . 29
5.2 Schema and Schema Specifications . 29
5.3 Components and Component Specifications 30
5.4 Classes and Class Specifications . 31
5.5 Attributes and Attribute Specifications . 33
5.6 Default Values . 34
5.7 Component Occurrence Constraints .. 34

5.7.1 NUM OCCUR KEY . 34
5.7.2 MIN OCCUR KEY . 35
5.7.3 MAX OCCUR KEY . 35

5.8 Attribute Value Constraints . 35
5.8.1 LENGTH KEY . 36
5.8.2 MIN LENGTH KEY . 36
5.8.3 MAX LENGTH KEY . 37
5.8.4 NUM ENTRIESKEY . 37
5.8.5 MIN ENTRIESKEY . 38
5.8.6 MAX ENTRIESKEY . 38
5.8.7 NUM IDS KEY . 39
5.8.8 MIN IDS KEY . 39
5.8.9 MAX IDS KEY . 39
5.8.10 MIN INCLUSIVE KEY . 40
5.8.11 MIN EXCLUSIVE KEY . 40
5.8.12 MAX INCLUSIVE KEY . 41
5.8.13 MAX EXCLUSIVE KEY . 41
5.8.14 VALID CLASSESKEY . 42
5.8.15 ONE OF KEY . 42

5.9 Attribute Types . 43
5.9.1 Primitive Attribute Types . 43

5.9.1.1 INTEGERTYPE . 43
5.9.1.2 REALTYPE . 44
5.9.1.3 BOOLEANTYPE . 44
5.9.1.4 STRINGTYPE . 44
5.9.1.5 IDTYPE . 45

5.9.2 Compound Attribute Types . .. 45
5.9.2.1 INTEGERLIST TYPE . 45
5.9.2.2 REALLIST TYPE . 46
5.9.2.3 BOOLEANLIST TYPE . 46
5.9.2.4 STRINGLIST TYPE . 47
5.9.2.5 COMPATR TYPE . 47

A ANML Files Used in Tutorials 51

1

Chapter 1

Introduction

Another Modelling Language(ANML) is a general purpose modelling language for describing various systems such
as communication networks. It consists of three general constructs: models, schemas and databases. Models are
descriptions of specific system scenarios, schemas specify the rules for creating models and databases serve as a
repository of components for easy reuse in different models. ANML models can be processed and input to applications
such as simulators and graphical user interfaces using a tool called theANML Processor.

The purpose of this paper is to define the ANML syntax, to define the ANML Schema syntax and to provide
examples for defining schemas and creating models. For information on using the ANML Processor and interfacing it
with application programs, please refer to theANML Processor Manual.

The introduction continues by explaining the origin of ANML, by describing some of the notation used in this
document and by providing the layout for the remainder of this document.

1.1 Origin

ANML was developed by the TeleSim Group at the University of Calgary in conjunction with theInternet Proto-
col Traffic and Network(IP-TN) simulator [5]. IP-TN complements another simulator developed previously by the
TeleSim Group called theATM Traffic and Network(ATM-TN) simulator [6]. The format for describing network
models in ATM-TN allows for the creation of complicated network models, but can be difficult to use. A language
avoiding the difficulties encountered with ATM-TN was desired for use with IP-TN.

Two languages served as a basis for ANML. One of these languages is theDomain Modeling Language(DML) [4].
DML is used to describe simulation scenarios for theScalable Simulation Framework(SSF) [1]. The other language
is theExtensible Markup Language(XML) (http://www.w3.org/XML/). DML and XML both use schemas to define
rules for creating models. ANML is primarily based on DML, with many features from XML included as well.

Some additional information on the origin of ANML can be found in [2].

1.2 Notation

The syntax for ANML and the ANML Schema is presented in a manner similar to that of the Extended Backus-Naur
Form (EBNF). A set of rules called productions are used to represent the syntax. Each production defines a symbol as
shown below:

Production Notation
symbol ::= alternative 1j alternative 2j ... j alternative N

If more than one production is associated with a single symbol the ‘j’ character is used to separate the alternative
productions.

A symbol is either a terminal or non-terminal symbol. Terminal symbols are also referred to as tokens or a unit of
the syntax that is indivisible. A terminal can be given directly as a literal string inside of quotes, or written using all
upper case letters. Terminal symbols written in upper case are then defined in a production using a regular expression.

2 CHAPTER 1. INTRODUCTION

Non-terminal symbols are written in all lower case letters and are defined in a production as a sequence of non-terminal
and terminal symbols.

A regular expression is used to describe a certain pattern of characters. In this document, regular expressions are
presented in the format used bylex [3]. An explanation of the lex regular expression notations that are used in this
document, as well as some examples are given below.

Regular Expression Notation
? - matches zero or one occurrence of the preceding expression
* - matches zero or more occurrences of the preceding expression
+ - matches one or more occurrences of the preceding expression
[] - matches any character in brackets

- if first character in brackets is ‘ˆ’, matches any character except
those inside the brackets

- a ‘-’ indicates a character range, except when it occurs as the first
character in the brackets, in which case it indicates a dash itself
i.e. [0-9] for all digits

() - used to group a series of regular expressions together
“...” - everything in between quotes is interpreted literally
n - used to escape meta-characters or for C escape sequences

i.e. ‘n?’ is a ‘?’, ‘n*’ is a ‘*’, ‘ nn’ is a ‘n’
i.e. ‘nn’ is a newline character , ‘nt’ is a tab character

Regular Expression Examples
[0-9]+ - matches one or more digits (i.e. a positive integer)
[-+]?[0-9]+ - matches one or more digits that may begin with a sign (i.e. an integer)
[-+]?[0-9]+(n.[0-9]+)? - matches a decimal number where the decimal part is optional
[A-Z][a-z]* - matches a string that begins with an upper case letter and is

followed by zero or more lower case letters
[ˆ nnnt] - matches any character except spaces, newlines and tabs
“?” - matches a question mark

1.3 Document Layout

The remainder of the document proceeds as follows. Sections 2 and 3 present tutorials on how to define schemas and
create models. Formal definitions of the ANML syntax and ANML Schema syntax are then given in Sections 4 and 5.
An appendix is attached at the end of the document with the complete versions of the ANML documents used in the
tutorials.

3

Chapter 2

Tutorial: How to Define an ANML Schema

This tutorial describes the process to follow when defining an ANML schema. A schema defines the allowable com-
ponents, the associated attributes and the compositional rules of what is to be modelled. Application developers, or
others who may be responsible for defining a schema, are intended as the primary audience of this section. However,
general users of an application utilizing ANML need to have a basic understanding of what is contained in a schema
definition, as it is the schema that dictates what may be modelled.

There are two main steps in defining a schema. The first step establishes the general structure of what is to be
modelled and the second step is writing the schema. To help illustrate these steps, portions of an example schema for
communication network models are presented and explained. A full version of the example schema can be found in
appendix A. General users should read the second step.

2.1 Step 1 - Establish the General Structure of What is to be Modelled

The first step in defining a schema is establishing the general structure of what is to be modelled. This involves
establishing the types of components that a model may be composed of, as well as determining how these components
may be composed together. For example, if networks are to be modelled it is necessary to establish the components a
network may contain and how they can be composed together to construct networks.

To start, an abstract description of what is to be modelled must be developed. Using the abstract description, the
component types needed in the model can be identified and represented in a class structure. ANML has been designed
to follow object oriented programming concepts meaning it has class hierarchy and inheritance. All classes must be
derived from a built-in base class called ‘Component’.

After establishing a class structure for the component types, the compositional rules for the model components
need to be identified. First, identify the different types of top level or main components. Then identify the types of
sub-components the top level components can be composed of. This process is continued until the sub-component
types cannot be further decomposed.

As an example, let us establish a possible structure for describing simple communication network models. First,
an abstract description of a communication network model must be developed. Assume that we are only concerned
with modelling the topology of the network. We are primarily interested in modelling wide area networks and are not
too concerned about details of the exact topology at the local area network level. End nodes on the network should
be capable of generating and receiving traffic and intermediate nodes should be capable of routing traffic to its correct
destination. Let us call the end nodes hosts, and the intermediate nodes routers. Nodes are joined together by links.

From the abstract description we can see that there are three main types of components: networks, nodes and
links. Two types of nodes need to be modelled, namely, hosts and routers. The types of links to model also need to
be considered. We may have links that directly join two nodes together. Let us call these links point-to-point links or
P2P links. We also need to represent the connection of multiple nodes on a local area network or LAN. LANs may
be organized in topologies such as rings or stars, but since we are not concerned with the exact topology of LANs, we
will model LANs with a single link to which all nodes on the LAN are attached. These will be called LAN links. The
types mentioned above can be represented in a class structure for ANML as can be seen in Figure 2.1.

4 CHAPTER 2. TUTORIAL: HOW TO DEFINE AN ANML SCHEMA

Component

Node

LAN_Link

Network

Host Router

Link

P2P_Link

Figure 2.1: Network Schema Class Structure

Derived from the base ‘Component’ class are the ‘Network’, ‘Node’ and ‘Link’ classes. The ‘Router’ and ‘Host’
classes are derived from the ‘Node’ class to represent the two different types of nodes. The ‘P2PLink’ (point-to-point
links) and ‘LAN Link’ classes are derived from the ‘Link’ class to represent the two different types of links. Should
we wish to model additional types of nodes or links in the future we can easily add new sub-classes to the ‘Node’ and
‘Link’ classes.

Now let us establish the compositional rules. The main type of component that we are trying to model is a network.
Networks consist of nodes and links to connect the nodes together. Also, networks are organized in a hierarchical
manner, that is, they can be divided into sub-networks. The Internet is an example of a very large network that is
composed of many different networks, each network being further divided into sub-networks and so on. Nodes and
links may not be composed of any other components so we have discovered all of the compositional rules. A model
may consist of networks and networks may consist of networks (sub-networks), nodes and links.

2.2 Step 2 - Write the Schema

Now that the class structure for the schema has been defined, the schema can be written into an ANML file. It is best
to define a schema in its own file as the schema will be used by many different models. The schema file can then be
included in any of the model files. A schema is defined using the ‘schema’ reserved key. The general syntax for a
schema is given below.

_schema [
_name STRING // name to identify the schema

_classes [// definition of component types
Class1 []
Class2 []
...

]

_components [// declaration of components valid at top level of model
Component1 []
Component2 []
...

]

]

A name must be given first to identify the schema using the ‘name’ reserved key. The name key may be assigned
any value that matches the ‘STRING’ production of the ANML syntax given in Figure 4.1. For example, ‘NetSchema’
could be given as the name of the schema. After giving a name, the different types of components that may exist in a
model need to be defined using the reserved key ‘classes’. Each component type is represented by a class in ANML.
Classes are defined as a sequence of key-value pairs, with each key being the name of a class. The types of components
that may occur in the top level of a model are then declared using the reserved key ‘components’. They are declared

2.2. STEP 2 - WRITE THE SCHEMA 5

as a sequence of key-value pairs, with each key being the class name of a valid top level component. The ‘classes’
and ‘ components’ sections may be placed in any order. As the ‘components’ section is normally quite small, it is
suggested that it be placed before the ‘classes’ section to allow for easier reference to it. This section proceeds by
showing how to define a class and how to declare a valid top level component type.

2.2.1 Defining a Class

The general syntax for defining a class is given below.

COMPONENT_NAME [// the name of the class
_isa COMPONENT_NAME // the name of the parent class - must be given first
_app_class STRING // name of the corresponding application class
_may_instantiate BOOLEAN // indicates if class can be instantiated
_components [...] // declaration of allowable sub-components
_attributes [...] // definition of attributes associated with class
_default [...] // assignment of default attribute values

]

In defining a class, the name of the class is given first. The name of the class must match the ‘COMPO-
NENT NAME’ production of the ANML syntax given in Figure 4.1. Class specifications are then given as a sequence
of key-value pairs. The reserved key ‘isa’ must be given first to indicate the parent class. The class given must be
a class that is defined in the ‘classes’ section of the schema or it must be the ‘Component’ class. The ‘Component’
class is the base class of all classes defined in the schema. A class will inherit all of the component declarations,
attribute definitions and default attribute values of its parent class and so on up the class hierarchy. The remaining
class specifications may be given in any order and are all optional.

The ‘ appclass’ reserved key can be used to specify the name of the corresponding class in an application using
ANML models as input. This information can be used by the application to identify the type of object to build. For
example, consider the ‘Host’ class in the network schema class structure given in Figure 2.1. An application could have
a class called ‘hostt’ that represents a ‘Host’ in an ANML model. The ‘appclass’ reserved key could be assigned
the value ‘hostt’. Applications could also recognize the type of object to build by the name of the ANML class. In
this case, the ‘appclass’ key-value pair does not need to be given. The use of this optional specification gives more
freedom for creating or changing names of classes in a schema or in an application.

Quite often it is desirable to have certain base classes from which others may be derived but are meaningless to
instantiate on their own. For example, consider the ‘Node’ class in the network schema class structure given in Figure
2.1. ‘Node’ is a base class for the ‘Host’ and ‘Router’ classes. When instantiating a node we want to instantiate either
a ‘Host’ or a ‘Router’. Creating an instance of the ‘Node’ class would make no sense as we would not know the type of
the node. The ‘may instantiate’ reserved key allows one to specify whether or not instances of the class are allowed.
By default, all classes are instantiable, so this specification need only be given if the class is not instantiable. To do
this ‘false’ must be assigned as the ‘BOOLEAN’ value. The formal syntax for ‘BOOLEAN’ can be found in Section
5.9.1.3.

The remaining three class specifications are ‘components’, ‘attributes’ and ‘default’. The ‘ components’ re-
served key is used to declare allowable sub-components of instances of this class. Any descendant classes of the
declared sub-components are allowable as well. The ‘attributes’ reserved key is used to define any attributes associ-
ated with the class and the ‘default’ reserved key is used to assign default attribute values. Instructions on declaring
valid sub-components, defining attributes and assigning default attribute values are given in Sections 2.2.1.1, 2.2.1.2
and 2.2.1.3 respectively.

As examples, let us define the ‘Network’, ‘Node’ and ‘Router’ classes in the network schema class structure given
in Figure 2.1.

Network [
_isa Component
...

]

6 CHAPTER 2. TUTORIAL: HOW TO DEFINE AN ANML SCHEMA

Node [
_isa Component
_may_instantiate false

]

Router [
_isa Node
...

]

The ‘Network’ and ‘Node’ classes are derived from the base ‘Component’ class whereas the ‘Router’ class is de-
rived from the ‘Node’ class. We are not concerned with a corresponding application class and thus omit the ‘appclass’
reserved key. We want the ‘Network’ and ‘Router’ classes to be instantiable so we omit the ‘may instantiate’ reserved
key since by default all classes are instantiable. On the other hand, we do not want to allow instances of the ‘Node’
class so we give the ‘may instantiate’ reserved key and assign it a value of ‘false’. The remaining details of the
‘Network’ and ‘Router’ classes are given in the sub-sections below.

2.2.1.1 Declaring a Valid Sub-Component

Valid sub-components may be declared in the ‘components’ section of the class definition. The outline for declaring
a valid sub-component is given below.

COMPONENT_NAME [// The class name of the valid sub-component type
_occurs [...] // Occurrence constraints

]

An allowable sub-component is declared by first giving the class name as the key. As the value, occurrence
constraints may or may not be specified. Occurrence constraints restrict the number of times a component of this
class may occur as a sub-component of the class being defined. By default, one may have an unlimited number of
occurrences of a component. A description of the different kinds of occurrence constraints can be found in Section
5.7.

The component declarations for the ‘Network’ class are given below.

_components[
/* A Network may contain subnets */
Network []

/* A Network may contain different nodes */
Node []

/* A Network may contain links to connect the nodes together */
Link []

] // end Network _components

Networks may contain nodes and links and subnets which in turn may contain nodes and links and further subnets.
We do not wish to constrain the allowable occurrences and thus do not specify any occurrence constraints. A router
may not contain any sub-components and thus we do not define a ‘components’ section for the ‘Router’ class.

2.2. STEP 2 - WRITE THE SCHEMA 7

2.2.1.2 Defining a Class Attribute

Attributes may be defined in the ‘attribute’ section of a class definition. The outline for defining an attribute is given
below.

ATTRIBUTE_NAME[// the name of the attribute
_atr_type STRING // the type of the attribute - must be given first
_is_optional BOOLEAN // indicates if the attribute is optional or mandatory
_constraints [...] // constraints on the value of the attribute
_attributes [...] // the inner attributes for a composite attribute

]

To define an attribute, the name of the attribute is given as a key. The name of the attribute must match the
‘ATTRIBUTE NAME’ production of the ANML syntax given in Figure 4.1. As the value, a sequence of key-value
pairs is given indicating the type of the attribute and any constraints. The type must be given first using the reserved
key ‘ atr type’. An attribute can be one of several types which are listed in Section 5.9. The remaining specifications
are optional and may be given in any order.

The ‘ is optional’ reserved key is used to indicate if an attribute is optional or mandatory. Indicating that an
attribute is optional means that a value for the given attribute need not be assigned. By default, all attributes are
mandatory so this specification only needs to be given if the attribute is optional. To do this ‘true’ must be given as the
boolean value.

If the attribute is mandatory then the attribute must be assigned in a component instance for the instance to be
valid. A mandatory attribute does not necessarily have to be assigned by the user though. If the mandatory attribute
has been assigned a default value in the ‘default’ section of a ‘class’ definition, the attribute will automatically be
assigned the default value in a component instance if the user does not assign another value.

Various constraints can be specified to restrict the allowable values of an attribute by using the reserved key
‘ constraints’. A description of the different kinds of attribute constraints can be found in Section 5.8. In the case that
an attribute is a composite attribute, which is specified by the type ‘compatr’, the ‘ constraints’ reserved key cannot
be used. A composite attribute is an attribute that has internal attributes. Instead of using the ‘constraints’ reserved
key, the ‘ attributes’ reserved key is used to define the attributes internal to the attribute. Internal attributes may have
constraints imposed as long as they are not composite attributes.

There are no attributes that we wish to associate with the ‘Network’ class so we do not define an ‘attributes’
section. On the other hand, we wish to associate some attributes with the ‘Router’ class and define them below.

_attributes [

/* the time it takes to process a packet in the router in seconds. */
proc_delay [

_atr_type real
_constraints [_min_exclusive 0]

]

/* size of buffer on each router interface in Bytes. */
buffer_size [

_atr_type real
_constraints [_min_exclusive 0]

]

/* the lan_links a router is attached to */
lan_links [

_atr_type id_type
_is_optional true
_constraints [_valid_classes {LAN_Link}]

8 CHAPTER 2. TUTORIAL: HOW TO DEFINE AN ANML SCHEMA

]

] // end Router _attributes

We want the ‘procdelay’ and ‘buffersize’ attributes to be mandatory so we omit the ‘is optional’ key. Both
of these attributes are of the ‘real’ (real number) type and we want their values to be strictly greater than zero. The
‘ min exclusive’ constraint is used to specify this. We want the ‘lanlinks’ attribute to be optional as a router might
not be connected to a LAN. Therefore, we specify the ‘is optional’ key as being ‘true’. The type of the ‘lanlinks’
attribute is the ‘idtype’ which means that values assigned to this attribute are identifiers that point to other components
in the model. To ensure that only components of type ‘LANLink’ may be pointed to the ‘valid classes’ constraint is
used.

2.2.1.3 Assigning a Default Attribute Value

Default attributes are assigned in the ‘default’ section of a class definition. Only attributes which are not of the
‘id type’ can be given default values since identifiers are only known when a model is being created. Inherited
attributes may also be assigned default values. If the inherited attribute was assigned a default value in an ancestor
class, it is overridden by the newly assigned value for this class and its descendants.

Default values should only be assigned to mandatory attributes. If a default value is assigned to an optional attribute
the attribute is no longer optional. This is because the default value is automatically assigned to an attribute if the user
does not assign a value.

The ‘Network’ class has no attributes associated with it so the ‘default’ section is not defined. The ‘Router’ class
does have attributes associated with it and the ‘default’ section is defined as below.

_default[

proc_delay 0.000001 // seconds
buffer_size 51200 // 51200 Bytes = 50 kB

] // end Router _default

Default values are assigned to the ‘procdelay’ and ‘buffersize’ attributes of the ‘Router’ class. Therefore, if
either of these attributes are not assigned in a ‘Router’ definition or instance, the default values indicated above will
automatically be assigned.

2.2.2 Declaring a Valid Top Level Component

The last thing to do when defining a schema is to declare the components that are allowed at the top level of a model.
Top level components refer to those components that are not instantiated in another component, or are at the top of the
component hierarchy. This is done in the same manner as declaration of components in a class definition. (See Section
2.2.1.1.) The top level component declarations for the NetSchema are given below.

_components [
/* Allow only a single Network instance at top level

*/
Network [_occurs [_num_occur 1]]

] // end _schema _components

We want to model networks so we only allow ‘Network’ instances at the top level. The ‘num occur’ constraint
is used to indicate that only one instance of ‘Network’ is allowed. This network of course can be composed of many
sub-networks.

9

Chapter 3

Tutorial: How to Create an ANML Model

This tutorial describes a suggested process to follow when creating an ANML model. Before creating an ANML
model one should be familiar with the ANML schema that has been defined for the model being created. It is the
schema that specifies what components and attributes may exist in a model. (See Section 2.2).

An example network model that uses the example network schema from Section 2 is used to demonstrate this
process. The network schema definition file and the full versions of the files used to create the example network model
can be found in appendix A.

This section proceeds by explaining the four main steps used to create an ANML model. The first step is deciding
what to model. The second step is breaking the model into individual components. The third step is defining database
components needed for the model. Finally, the fourth step is defining the actual model.

3.1 Step 1 - Decide What to Model

The first step in creating an ANML model is deciding what to model. For example, if one is planning to create a
network model, the topology of the network has to be decided upon. In this case drawing a digram of the network
topology is the easiest way to do this. The topology of the example network used for this tutorial is given in Figure
3.1.

3.2 Step 2 - Break the Model Down into Individual Components

After deciding what to model, the model needs to be broken into individual components. Start by identifying the indi-
vidual top level components. Then for each individual top level component, identify the individual sub-components.
Continue this process until components that have no sub-components are reached. Special attention should be given
for finding components that are identical.

For a network model this involves breaking the network into its subnets, and breaking the subnets into their subnets,
and so on. Care must be taken to look for subnets that are identical. Also, the different types of nodes and links on the
network must be examined.

By examining the network topology given in Figure 3.1, we can see that there are three main networks, which
are further broken into subnets. There are subnets that have two hosts and subnets that have three hosts. Notice that
network 1 and network 3 are identical. Three routers form a backbone that joins the three networks together. We can
also see that there are two different types of links. There are OC-3 point-to-point links that join the routers together
and 10Mbps links that join the nodes of the small subnets or local area networks (LANs) together. Figure 3.2 shows
how the example network has been decomposed.

3.3 Step 3 - Define Components Needed by the Model in a Database

After breaking a model into individual components, these components can be defined in database structures. A
database structure exists to serve as a repository of component definitions for use in constructing models. This al-

10 CHAPTER 3. TUTORIAL: HOW TO CREATE AN ANML MODEL

N3

N1

N2

N2

N1

N1

N2

H3

H2

H1

H1

H2
N1

H1

H2

H1

H2

H3H2H2H1

N2

N1.R1
N3.R1

N2.R1

10Mbps

10Mbps

10Mbps

10Mbps

10Mbps

OC3

OC3
OC3

N - Network
H - Host
R - Router

Legend

Router

Host
Link

OC3 = 155.52 Mbps

Rate

H1

10Mbps

Figure 3.1: An Example Network Topology

lows for components to be defined only once and used repeatedly. Databases can be kept for future use to allow for
easy construction of other models. Note that it is not necessary for components to be defined in databases. Compo-
nents can be instantiated based on the schema alone. Figure 3.3 illustrates model dependencies. Models can be created
based on the schema alone, based on both the schema and databases, or based on databases alone. Databases always
depend on the schema and possibly on other databases as well.

An outline for defining a database is given below.

_database [
_name STRING // the name of the database - must be the first entry
DatabaseEntry1 []
DatabaseEntry2 []
...

]

Databases are defined using the reserved key ‘database’. The value associated with the ‘database’ key is a key-
value list. The first entry of the key-value list is the ‘name’ reserved key which assigns a name to the database. No
two databases may have the same name. The remaining entries of the key-value list are the component definitions. An
outline for a component definition is given next.

3.3. STEP 3 - DEFINE COMPONENTS NEEDED BY THE MODEL IN A DATABASE 11

OC3

10Mbps

Link Types

Network Nodes

Router

Host

H2H1 H3H2H1

Simple Networks

H2H1 H3H2H1

N1 N2

10Mbps 10Mbps

H2H1

N1

10Mbps 10Mbps

H2H1

N2

Composed Networks

Figure 3.2: Decomposition of Example Network Topology

COMPONENT_NAME [
_class STRING // the class the component belongs to - must be the first entry

... // sub-component instances and attribute assignments
]

A component is defined by first giving it a name as the key. Each component definition within a given database
must have a unique name. Also, the name may not be the same as that of a class defined in the schema being used.
For the value, a key-value list is given of which the first key-value pair must specify the class this component belongs
to. This is done using the reserved key ‘class’. The class must be a class that has been defined in the schema that
is being used. The remaining key-value pairs specify the desired sub-components and attributes for the component
definition. Only sub-components and attributes which are specified in this component’s class definition in the schema
may be used.

Indivisible components of the model are defined first. These components are then used to define the larger compo-
nents. Nodes and links are indivisible components, so let us first define a database for the different types of nodes on
the network.

12 CHAPTER 3. TUTORIAL: HOW TO CREATE AN ANML MODEL

Schema

DB 1 DB 2 DB m

Model 1 Model 2 Model nModel 3 Model 4

Figure 3.3: Model Dependencies

/*---
* Database: Node_DB
*
* Description: Contains definitions of different network nodes.
*---
*/

_database [
_name Node_DB

StdHost[_class Host buffer_size 102400]

StdRouter[_class Router proc_delay 0.000005 buffer_size 102400]

] // end _database Node_DB

One type of host and one type of router have been defined for use in the model. These components have no sub-
components but do have some associated attributes. The host has a buffer size associated with it while the router has
a processing delay and a buffer size associated with it. Attributes are assigned by giving the name of the attribute and
then the value. The allowable value depends on the type of the attribute and the constraints imposed on the attribute
as specified in the schema definition. Further information pertaining to attribute constraints and types can be found in
Sections 5.8 and 5.9.

Let us now create the database for the other group of indivisible components, namely, the links.

/*---
* Database: Link_DB
*
* Description: Contains definitions of different links.
*---
*/

_database [
_name Link_DB

/* 10Mbps LAN_Link (representative of 10Mbps Ethernet) */

3.3. STEP 3 - DEFINE COMPONENTS NEEDED BY THE MODEL IN A DATABASE 13

LAN_10Mbps[_class LAN_Link rate 10]

/* an OC-3 point-to-point link - 155.52 Mbps */
Link_OC3[_class P2P_Link rate 155.52]

] // end _database Link_DB

A 10 Mbps LAN link and an OC-3 point-to-point link are defined to represent the two types of links in the network
model. By examining the class definitions of ‘LANLink’ and ‘P2PLink’ in appendix A we can see that default values
for the ‘mtu’ attribute of 1500 and 9180 respectively have been given. As the link definitions in the database do not
assign the ‘mtu’ attribute, the default values are automatically assigned. Attributes only need to be assigned if they
have a value different from the default value.

Now that we have databases for the different network nodes and links, we can start to define and compose the
different networks. Let us start with the simple networks as labeled in Figure 3.2. First of all, we will define the
network that has only two hosts as shown in Figure 3.4. Let us name it ‘Net2H’ to represent that it has two hosts.

H2H1

Figure 3.4: Simple Network with 2 Hosts

/*---
* Database: Network_DB
*
* Description: Contains definitions of various networks.
*---
*/

_database [
_name Network_DB

/* A LAN with two hosts */
Net2H[

_class Network
LAN_10Mbps[_id L1 _in_database Link_DB delay 0.00001]
StdHost[_id {H1,H2} _in_database Node_DB lan_link .L1]

]

...

The ‘Net2H’ component definition demonstrates the instantiation of sub-components in a component definition.
Components may be instantiated with or without the use of a database component definition. All of the sub-component
instances in ‘Net2H’ were created using database component definitions. When instantiating a component using a
component definition all of the attributes and sub-components specified in the component definition are adopted by
the instance. In essence, a copy of the definition is made to which additional sub-components and attributes may be
added. A general outline for creating component instances using component definitions is given next.

14 CHAPTER 3. TUTORIAL: HOW TO CREATE AN ANML MODEL

COMPONENT_NAME [// the name of the component definition being used
_id value // the id of the component instance - must be the first entry
_in_database STRING // the name of database component definition is in -

// must be the second entry

... // additional sub-component instances and attribute assignments

]

When instantiating a component using a component definition, the name of the component definition is given as
the key. As the value, a key-value list is given in which the first entry specifies the identifier of the component and
the second entry specifies the database that this component definition is contained in. The identifier of the component
must be unique to the level that it is on. The remaining entries of the list are additional sub-component instances and
attribute assignments above what is already contained in the component definition. These additional sub-components
and attributes must be specified in the component’s class definition in the schema in order to be used. It is not necessary
to specify additional sub-components and attributes though. Both the ‘LAN10Mbps’ and ‘StdHost’ instances in
‘Net2H’ add an extra attribute assignment. The ‘LAN10Mbps’ instance assigns a delay to the link. The ‘StdHost’
instance specifies the LAN link that it is connected to.

It is also possible to create a component instance without using a component definition (i.e., dependent on the
schema only). The general outline for creating a component instance in this manner is given below.

COMPONENT_NAME [// the name of the class component instance belongs to
_id value // the id of the component instance - must be the first entry

... // sub-component instances and attribute assignments

]

When instantiating a component without using a component definition, the name of the class the component
instance belongs to is given as the key. As the value, a key-value list is given in which the first entry specifies the
identifier of the component. The remaining key-value pairs specify the desired sub-components and attributes for the
component instance. Only sub-components and attributes which are specified in this component’s class definition in
the schema may be used.

For example, the ‘LAN10Mbps’ sub-component instance of ‘Net2H’ could have been instantiated to create the
exact same instance without using a database definition as follows.

LAN_Link [_id L1 rate 10 delay 0.00001]

The advantages of using database component definitions, are that they can be used over and over. Attributes
and sub-components do not need to be given every time and they help maintain consistency in a model. Defining
components in databases is especially helpful when components are large and complicated.

The definition of ‘Net2H’ also represents two different ways of specifying the ‘id’ of a component. Speci-
fying a single identifier creates a single component instance. For example, ‘L1’ was specified as an identifier for
‘LAN 10Mbps’ so only one instance of ‘LAN10Mbps’ is created with identifier ‘L1’. On the other hand, specifying
a list of identifiers creates an instance for every identifier in the list. For example, ‘StdHost’ has a list of identifiers
specified (‘fH1,H2g’) and thus two instances of ‘StdHost’ are created with identifiers ‘H1’ and ‘H2’. This is a tool to
help easily create multiple instances of a component.

Another thing to note is the use of an identifier in the ‘lanlink’ attribute of the ‘StdHost’ instances.

StdHost[_id {H1,H2} _in_database Node_DB lan_link .L1]

The ‘lan link’ attribute is of the type ‘idtype’. This means that the value of the attribute is an identifier of another
component in the model. When an ‘idtype’ attribute begins with a ‘.’ it refers to a component instance beginning
at the same level of the component instance the attribute is assigned in. So in the above example, the ‘.L1’ identifier
refers to a component instance at the same level as the ‘StdHost’ instances. Therefore, the ‘.L1’ is referring to the

3.3. STEP 3 - DEFINE COMPONENTS NEEDED BY THE MODEL IN A DATABASE 15

‘LAN 10Mbps’ instance with identifier ‘L1’ that is instantiated at the same level as the ‘StdHost’ instances. If a ‘.’
does not precede an ‘idtype’ attribute value, then it refers to a component instance beginning at the sub-component
level of the component instance the attribute is in. More information on the ‘idtype’ can be found in Section 5.9.1.5.

Continuing on, let us define the network with three hosts as shown in Figure 3.5. Let us give it the name ‘Net3H’
to represent that it has three hosts.

H3H2H1

Figure 3.5: Simple Network with 3 Hosts

/* A LAN with three hosts */
Net3H[

_class Network
LAN_10Mbps[_id L1 _in_database Link_DB delay 0.00001]
StdHost[_id [_from H1 _to H3] _in_database Node_DB lan_link .L1]

]

The above example demonstrates the third and last way that the identifier of a component may be specified. Besides
specifying a single identifier or a list of identifiers, a range of identifiers can be specified. By specifying a range of
identifiers a component for each identifier in the range is created. In the above example three instances of ‘StdHost’
are created with identifiers ‘H1’, ‘H2’ and ‘H3’.

Now that the simple networks have been defined, we can define the larger networks which are composed of the
smaller networks. These networks can be seen in Figure 3.2 labeled as ‘Composed Networks’. Let us start by defining
the network that has the two identical subnets as shown in Figure 3.6. We will name it ‘Net2SA’ to represent that it
has two subnets and to distinguish it from the other network type with two subnets. Defining this network involves
using the simple network ‘Net2H’ that was already defined.

H2H1

N1

10Mbps 10Mbps

H2H1

N2

Figure 3.6: Network Composed of Two Identical Subnets

/* A network with two subnets, both having two hosts each. A router
* joins the two subnets.
*/

Net2S_A[
_class Network
Net2H[_id {N1,N2} _in_database Network_DB]

16 CHAPTER 3. TUTORIAL: HOW TO CREATE AN ANML MODEL

StdRouter[_id R1 _in_database Node_DB lan_links{.N1.L1, .N2.L1}]
]

The ‘lan links’ attribute of the ‘StdRouter’ instance is of the ‘idtype’ and has a list of identifiers as its value. Just
as in specifying the identifier of a component, the value of an ‘idtype’ attribute may be a single identifier, a list of
identifiers or a range of identifiers. The identifiers referred to by the ‘lanlinks’ attribute also demonstrate the use of
hierarchical identifiers, or an identifier that has more than one level. A ‘.’ separates the levels of an identifier. Let us
examine the identifier ‘.N1.L1’. The ‘.N1’ refers to the ‘Net2H’ instance with identifier ‘N1’. The ‘L1’ then refers
to the ‘LAN 10Mbps’ sub-component instance of ‘Net2H’ with identifier ‘L1’. More information on hierarchical
identifiers can be found in Section 4.7.

Last of all, let us define the network that has the two different subnets as shown in Figure 3.7. Let us name it
‘Net2S B’ to represent that it has two subnets, and to distinguish it from the other network type with two subnets.

H2H1 H3H2H1

N1 N2

10Mbps 10Mbps

Figure 3.7: Network Composed of Two Different Subnets

/* A network with two subnets, one with two hosts, and one with three hosts.
* A router joins the two subnets.
*/

Net2S_B[
_class Network
Net2H[_id N1 _in_database Network_DB]
Net3H[_id N2 _in_database Network_DB]
StdRouter[_id R1 _in_database Node_DB lan_links{.N1.L1, .N2.L1}]

]

] // end _database Network_DB

3.4 Step 4 - Define the Model

After all the necessary database components have been defined, the model can now be defined. As database compo-
nents are designed for easy reuse, the model should be defined in a separate file from the database file or files. The
model file can include the database files that it needs. The model file should also include the file which has the schema
definition to be used. Inclusion of files is done as demonstrated below.

_include "net_schema.anml"
_include "net_databases.anml"

A file can be included using the ‘include’ reserved keyword. The name of the file to be included is then specified
as the value.

3.4. STEP 4 - DEFINE THE MODEL 17

An outline for defining a model is given below.

_model [
_name STRING // the name of the model
_use_schema STRING // the name of the schema used to validate the model

... // component instances in model
]

Models are defined using the reserved key ‘model’. The value associated with the ‘model’ key is a key-value
list. A name is assigned to the model using the reserved key ‘name’ and the name of the schema that will be used to
validate the model is given using the ‘useschema’ reserved key. The network model given in Figure 3.1 is defined
below. The definition of the model is concise as it uses the components that were previously defined in the databases.

_model[
_name tut1_model
_use_schema NetSchema

Network[
_id N

/* The model is comprised of three main networks */
Net2S_B[_id {N1,N3} _in_database Network_DB]
Net2S_A[_id N2 _in_database Network_DB]

/* The links to join the three networks together */
Link_OC3[_id L1 _in_database Link_DB delay 0.0001 nodeA .N1.R1 nodeB .N3.R1]
Link_OC3[_id L2 _in_database Link_DB delay 0.0002 nodeA .N1.R1 nodeB .N2.R1]
Link_OC3[_id L3 _in_database Link_DB delay 0.00015 nodeA .N2.R1 nodeB .N3.R1]

]
]

The model that we were trying to create has now been completed. We started by defining the smaller components
and then used them as building blocks in creating the model. Also, should we wish to create other models in the future,
we already have some database components defined for easy reuse. Proper utilization of the database can be of great
help in constructing large and complex models.

18 CHAPTER 3. TUTORIAL: HOW TO CREATE AN ANML MODEL

19

Chapter 4

A Formal Definition of ANML

This section proceeds by defining the syntax for ANML and then by examining each production of the syntax in detail.

4.1 ANML Syntax

The syntax for ANML using Extended Backus-Naur Form (EBNF) notation can be seen in Figure 4.1.

model ::= keyvalue list

key value list ::= key valuepair keyvalue list
j key valuepair

key valuepair ::= key value

key ::= COMPONENTNAME
j ATTRIBUTE NAME
j RESERVEDNAME

value ::= STRING
j “[” key value list “]”
j “[” “]”
j “f” value list “g”
j “f” “ g”

value list ::= valuelist ”,” value
j value

COMPONENTNAME ::= [A-Z][- a-zA-Z0-9]*

ATTRIBUTE NAME ::= [a-z][- a-zA-Z0-9]*

RESERVEDNAME ::= [- a-zA-Z0-9]*

STRING ::= n“[ˆ ntnnn”]* n”
j [ˆ ntnnn[n]nfngn/n”,#]*

Figure 4.1: ANML Syntax

20 CHAPTER 4. A FORMAL DEFINITION OF ANML

An ANML file, or set of files, defines a model through a list of key-value pairs. A key is a string of symbols that
is used to identify components of a model, attributes associated with a component, or other important information.
Associated with every key is a value that provides information pertaining to the key. Models are hierarchically defined
by allowing components to consist of sub-components.

4.2 Well-Formedness and Validity

An ANML model is considered to be well-formed if it matches the ‘model’ production of the syntax given in Figure 4.1
and if it satisfies any additional well-formedness constraints. A well-formed model is also referred to as a syntactically
correct model.

An ANML model is considered to be valid if it satisfies validity constraints and any other constraints imposed by
the ANML schema definition. A valid model is also referred to as a schematically correct model.

4.3 Model and Key-Value Pairs

The top level non-terminal of the ANML syntax is ‘model’. A model is what one wishes to define using ANML, such
as a network topology. Models are described via a list of key-value pairs which are defined in an ANML file or set of
ANML files.

Model
model ::= keyvalue list

Validity Constraint: All keys appearing in the top level of the ‘model’ key-value list must either be component keys
or reserved keys. Attributes may not be assigned at the top level of a model.

A key-value pair list must consist of at least one key-value pair, but is not limited in size. In general, some form of
white space, such as a space, tab or newline, is required between key-value pairs to distinguish them.

Key-Value Pair List
key value list ::= key valuepair keyvalue list

j key valuepair

A key-value pair consists of a key followed by a value. In general, some form of white space, such as a space, tab
or newline, is required between a key and a value to distinguish them.

Key-Value Pair
key valuepair ::= key value

4.4 Keys

A key is a string of symbols that is used to identify a certain piece of information. There are three types of keys:
component keys, attribute keys and reserved keys. A component key is the name of a component in the model such
as a ‘Network’ or ‘Host’. An attribute key is the name of an attribute associated with a component, such as the
‘buffer size’ of a ‘Host’. The reserved keys are predefined keys that are used to specify various information. Each of
the key types begins with a different type of character so as to more easily distinguish them.

Key
key ::= COMPONENTNAME

j ATTRIBUTE NAME
j RESERVEDNAME

4.4. KEYS 21

4.4.1 Component Keys

All component keys must begin with an upper case letter and may be followed by any pattern of alpha-numeric
characters, underscores (‘’) or hyphens (‘-’). A component key represents the name of a component in the model
such as ‘Network’ or ‘Host’. The value associated with a component key describes the component by specifying any
attributes associated with the component, and also by specifying any sub-components.

Component Name Key
COMPONENTNAME ::= [A-Z][- a-zA-Z0-9]*

Components are referred to in one of two ways: a component definition or a component instance. A component
definition may be created within a database to define a specific component with its associated attributes and sub-
components. A component instance is a component that occurs within a model and must be given a unique identifier.
Component definitions may be used in creating component instances.

4.4.1.1 Component Definitions

Validity Constraint:

A component definition must match the following syntax:

Component Definition Syntax
compdefinition ::= COMPONENTNAME “[” CLASS KEY STRING ... “]”

where ‘...’ refers to a continuation of the key-value pair list. Zero or more additional key-value pairs may occur in the
list.

The ‘COMPONENTNAME’ specifies the name of the component definition and the ‘STRING’ value associated
with the ‘ CLASS KEY’ specifies the class that the component belongs to. The desired sub-components and attributes
are then entered as the remaining key-value pairs.

Validity Constraint: A component definition may only occur as a top level entry in a database.

Validity Constraint: The ‘COMPONENTNAME’ of a component definition must not be the same as the name of a
class specified in the schema definition for the model. The ‘COMPONENTNAME’ must also not be the same name
as any other component defined in the same database.

4.4.1.2 Component Instances

Validity Constraint:

A component instance must follow the following syntax:

Component Instance Syntax
compinstance ::= COMPONENTNAME “[” ID KEY value ... “]”

j COMPONENTNAME “[” ID KEY value IN DATABASE KEY STRING ... “]”

where ‘...’ refers to a continuation of the key-value pair list. Zero or more additional key-value pairs may occur in the
list.

A component may be instantiated with or without using a component definition. If instantiating a component
without using a component definition, the first production above is used. The ‘COMPONENTNAME’ is the name of
the class the component instance belongs to. The value for the ‘ID KEY’ is the identifier of the component for the
hierarchical level that it is defined in. The desired sub-components and attributes for the component instance are then
entered as the remaining key-value pairs.

If instantiating a component using a component definition, the second production above is used. The ‘COMPO-
NENT NAME’ is the name of the component definition that is being used to create the component instance. The value
for the ‘ ID KEY’ is the identifier of the component for the hierarchical level that it is defined in. The name of the

22 CHAPTER 4. A FORMAL DEFINITION OF ANML

database that the component is defined in is given by the ‘STRING’ value of the ‘IN DATABASE KEY’. Any desired
additional sub-components and attributes, or modifications to the component definition being used, are then entered as
the remaining key-value pairs.

Validity Constraint: A component instance may not occur at a top level of a database.

Validity Constraint: If the ‘ IN DATABASE KEY’ is not specified the ‘COMPONENTNAME’ must be the name
of a class specified within the schema definition for the model.

Validity Constraint: If the ‘ IN DATABASE KEY’ is specified within the component instance then the ‘COMPO-
NENT NAME’ must be the name of a component definition within the specified database.

Validity Constraint: The identifiers specified in the value associated with the ‘ID KEY’ of a component instance
must be unique. If the component is a sub-component, then it’s identifier must be different from the identifiers of
all other sub-components of the same component. If the component is a top level component in the model, then it’s
identifier must be different from the identifiers of all other top level components in the model.

4.4.2 Attribute Keys

All attribute keys must begin with a lower case letter and may be followed by any pattern of alpha-numeric characters,
underscores (‘’) or hyphens (‘-’). An attribute describes a characteristic of a certain component. The ‘buffersize’ of
a ‘Host’ is an example of an attribute. If an attribute is assigned twice within the same component, the old assignment
of the attribute is overridden.

Attribute Name Key
ATTRIBUTE NAME ::= [a-z][- a-zA-Z0-9]*

4.4.3 Reserved Keys

All reserved keys must begin with an underscore (‘’) and may be followed by any pattern of alpha-numeric characters,
underscores (‘’) or hyphens (‘-’). Reserved keys are keys which are use to specify various information such as the
schema definition, identifiers, and inclusion of other files.

Reserved Name Key
RESERVEDNAME ::= [- a-zA-Z0-9]*

The reserved keys, excluding those used in the ANML Schema definition are given below.

4.4.3.1 CLASS KEY

The ‘ CLASS KEY’ is used in a component definition to specify the class that the component belongs to.

Class Key
CLASS KEY ::= “ class”

Validity Constraint: The ‘class’ key-value pair must match the following syntax:

Class Key-Value Syntax
classkey value ::= CLASS KEY STRING

The ‘STRING’ value of the ‘CLASS KEY’ is the name of the class that the component belongs to.

Validity Constraint: The ‘STRING’ value associated with the ‘CLASS KEY’ of a component definition must be
the name of a class specified within the schema definition for the model.

4.4. KEYS 23

4.4.3.2 DATABASE KEY

The ‘ DATABASE KEY’ is used to define a database. Within the database component definitions can be created for
easy reuse and creation of complex components.

Database Key
DATABASE KEY ::= “ database”

Validity Constraint: The ‘database’ key-value pair must match the following syntax:

Database Key-Value Syntax
databasekey value ::= DATABASE KEY “[” NAME KEY STRING ... “]”

where ‘...’ refers to a continuation of the key-value pair list. Zero or more additional key-value pairs may occur in the
list. These additional key-value pairs are the component definitions within the database. (See Section 4.4.1.1.)

The ‘STRING’ value associated with the ‘NAME KEY’ is the name of the database.

Validity Constraint: The ‘STRING’ value associated with the ‘NAME’ key must be unique among all of the database
names.

4.4.3.3 FROM KEY

The ‘ FROM KEY’ is used when specifying an identifier range, and indicates the the start of the range.

From Key
FROM KEY ::= “ from”

Validity Constraint: The ‘from’ key-value pair must match the following syntax:

From Key-Value Syntax
from key value ::= FROM KEY HIERARCHICAL ID

The ‘HIERARCHICAL ID’ value associated with the ‘FROM KEY’ is the identifier of the component to begin
the range from. Note that the value of the ‘FROM KEY’ must be a ‘LEVEL ID’ when used with the ‘ID KEY’ in
specifying the identifier of a component instance (see Section 4.4.3.4). For information on ‘HIERARCHICALID’s
and ‘LEVEL ID’s see Section 4.7.

Validity Constraint: The ‘HIERARCHICAL ID’ associated with the ‘FROM KEY’ must consist of two parts. The
prefix of the identifier must consist of a string of characters not ending with a digit. The suffix of the identifier must
be a number.

4.4.3.4 ID KEY

The ‘ ID KEY’ is used to specify the identifier of a component instance. A single identifier, a list of identifiers or a
range or identifiers may be specified to ease the process of creating multiple instances.

Identifier Key
ID KEY ::= “ id”

24 CHAPTER 4. A FORMAL DEFINITION OF ANML

Validity Constraint: The identifier key-value pair must match the following syntax:

Identifier Key-Value Syntax
id key value ::= ID KEY LEVEL ID

j ID KEY “ f” LEVEL ID, ... “g”
j ID KEY “[” FROM KEY LEVEL ID TO KEY LEVEL ID “]”

where ‘...’ refers to a continuation of the ‘LEVELID’ value list. All values in the list must be ‘LEVELID’s. The list
may be empty. For information on ‘LEVELID’s see Section 4.7.

When creating a single instance of a component the first production above is used. The ‘LEVELID’ value of the
‘ ID KEY’ is the identifier that is being given to the component instance.

When creating multiple instances of a component where the identifiers are not contiguous, the second production
above is used. A component for each ‘LEVELID’ value in the list is instantiated.

When creating multiple instances of a component where the identifiers are contiguous the third production above is
used. The ‘LEVELID’ value of the ‘ FROM KEY’ specifies the first identifier of the range. The ‘LEVELID’ value
of the ‘ TO KEY’ specifies the last identifier of the range. A component for each identifier in the range is instantiated.

Validity Constraint The string prefixes of the ‘LEVELID’ values associated with the ‘FROM KEY’ and ‘ TO KEY’
must be the same.

Validity Constraint The number suffix of the ‘LEVELID’ value for the ‘ TO KEY’ must be greater than or equal to
the number suffix of the ‘LEVELID’ value for the ‘ FROM KEY’.

4.4.3.5 IN DATABASE KEY

The ‘ IN DATABASE KEY’ is used when using a component definition to create a component instance. The value of
the ‘ IN DATABASE KEY’ specifies the name of the database that the component definition being used is in.

In Database Key
IN DATABASE KEY ::= “ in database”

Validity Constraint: The ‘in database’ key-value pair must match the following syntax:

In Database Key-Value Syntax
in databasekey value ::= IN DATABASE KEY STRING

The ‘STRING’ value associated with the ‘IN DATABASE KEY’ is the name of the database that the component
definition being used is in.

Validity Constraint: The ‘STRING’ value associated with the ‘IN DATABASE KEY’ must be the name of a
database that has been defined.

4.4.3.6 INCLUDE KEY

The ‘ INCLUDE KEY’ is used to include other files that contain definitions that are being used in the current file.

Include Key
INCLUDE KEY ::= “ include”

4.4. KEYS 25

Well-Formedness Constraint:The ‘include’ key-value pair must match the following syntax:

Include Key-Value Syntax
includekey value ::= INCLUDE KEY STRING

The ‘STRING’ value associated with the ‘INCLUDE KEY’ is the name of the file to include.

Well-Formedness Constraint:The ‘STRING’ value associated with the ‘INCLUDE KEY’ must be the name of an
existing file. The relative or absolute path to the file must be included as part of the file name.

4.4.3.7 MODEL KEY

The ‘ MODEL KEY’ is used to define a model.

Model Key
MODEL KEY ::= “ model”

Validity Constraint: The ‘model’ key-value pair must match the following syntax:

Model Key-Value Syntax
modelkey value ::= MODEL KEY “[” NAME KEY STRING USE SCHEMA KEY STRING ... “]”

where ‘...’ refers to a continuation of the key-value pair list which represents the components of the model. The
‘STRING’ value associated with the ‘NAME KEY’ is the name of the model and the ‘STRING’ value associated
with the ‘ USE SCHEMA KEY’ is the name of the schema that will be used to modify the model.

4.4.3.8 NAME KEY

The ‘ NAME KEY’ is used in specifying the name of a model, database or schema.

Name Key
NAME KEY ::= “ name”

Validity Constraint: The ‘name’ key-value pair must match the following syntax:

Name Key-Value Syntax
namekey value ::= NAME KEY STRING

The ‘STRING’ value associated with the ‘NAME KEY’ is the name of the model, database or schema.

4.4.3.9 TO KEY

The ‘ TO KEY’ is used to specify the upper end of an identifier range.

To Key
TO KEY ::= “ to”

Validity Constraint: The ‘to’ key-value pair must match the following syntax:

To Key-Value Syntax
to key value ::= TO KEY HIERARCHICAL ID

26 CHAPTER 4. A FORMAL DEFINITION OF ANML

The ‘HIERARCHICAL ID’ associated with the ‘TO KEY’ specifies the identifier of the component of the up-
per end of the identifier range. Note that the value of the ‘TO KEY’ must be a ‘LEVEL ID’ when used with the
‘ ID KEY’ in specifying the identifier of a component instance (See Section 4.4.3.4). For information on ‘HIERAR-
CHICAL ID’s and ‘LEVEL ID’s see Section 4.7.

Validity Constraint: The ‘HIERARCHICAL ID’ associated with the ‘TO KEY’ must consist of two parts. The
prefix of the identifier must consist of a string of characters not ending with a digit. The suffix of the identifier must
be a number.

4.4.3.10 USE SCHEMA KEY

The ‘ USE SCHEMA KEY’ is used in a model definition to specify the name of the schema to use to validate the
model.

Use Schema Key
USE SCHEMA KEY ::= “ useschema”

Validity Constraint: The ‘use schema’ key-value pair must match the following syntax:

Use Schema Key-Value Syntax
useschemakey value ::= USE SCHEMA KEY STRING

The ‘STRING’ value associated with the ‘USE SCHEMA KEY’ is the name of the schema that will be used to
validate the model.

Validity Constraint: The ‘STRING’ value associated with the ‘USE SCHEMA KEY’ must be the name of a schema
that has been defined.

4.5 Values

Values are always associated with a key and represent information pertaining to that key. There are three main types
of values: string values, key-value pair lists and value lists. Empty key-value pair lists or value lists are also acceptable
as values.

Value
value ::= STRING

j “[” key value list “]”
j “[” “]”
j “f” value list “g”
j “f” “ g”

For definition of the ‘keyvalue list’ production see Section 4.3. A value list is a list of values. Each value in the
list is separated by a comma.

Value List
value list ::= valuelist “,” value

j value

Validity Constraint: All values in a value list must be ‘STRING’s for a model to be valid. However, a model is still
well-formed if key-value pair lists and value lists are used as values in a value list. The syntax maintains support of all
types of values in a value list to easily allow for future extension if needed.

The terminal value is a string. If white space, square brackets, curly brackets, commas, slashes (‘/’) or hashes (‘#’)
appear in the string, the string needs to be put inside of quotes, otherwise quotes are not necessary.

4.6. COMMENTS 27

String Value
STRING ::= n“[ˆ ntnnn”]* n”

j [ˆ ntnnn[n]nfngn/n”,#]*

Well-Formedness ConstraintA string must be contained on a single line. Strings which extend over multiple lines
are not permitted.

4.6 Comments

ANML supports single line comments and multi-line nested comments. Several common styles of commenting are
supported for the user’s convenience. For single line comments the Unix ‘#’ and the C++ ‘//’ comment styles are
supported. Everything after a ‘#’ or ‘//’ on a line up until the end of the line is ignored. The following two lines
demonstrate the use of the two kinds of single line comments:

Network[// This is a single line comment.

or

Network[# This is a single line comment.

The C-style ‘/* */’ multi-line comments are supported with the difference that nested commenting is supported as
well. The character pair ‘/*’ marks the beginning of a comment and the matching character pair ‘*/’ marks the end of
a comment. All text between the matching beginning and ending comment symbols is ignored. For example:

/* This is a multi-line comment.

MyNetwork [/* This is a nested multi-line comment. */
_id N1
_in_database NetBase

]

*/

Whereas the above comment is an error C, as nested comments are not supported, it is not an error in ANML and
everything between the first occurrence of ‘/*’ and its matching last occurrence of ‘*/’ is ignored.

Well-formedness ConstraintComments may occur anywhere inside ANML documents except within a key word or
a string value. For example, the following use of a comment causes an error in ANML:

Net/*Invalid comment*/work [

4.7 Identification System

ANML has a hierarchical identification system. The following is the syntax for a hierarchical identifier:

Hierarchical Identifier Syntax
HIERARCHICAL ID ::= “.”?<LEVEL ID>(“.”<LEVEL ID>)*

LEVEL ID ::= [a-zA-Z][- a-zA-Z0-9]*

28 CHAPTER 4. A FORMAL DEFINITION OF ANML

Every component instance must be assigned a unique ‘LEVELID’ for the hierarchical level it is instantiated in.
(i.e. All sub-components of a given component must all have different identifiers.) Sub-components at lower levels
can then be referred to by inserting a ‘.’ in between the levels of the identifier.

Hierarchical identifiers either begin with a ‘.’ or they don’t. Identifiers which begin with a ‘.’ always refer to
components starting from the same level as the component that the identifier is an attribute value of. Identifiers which
don’t begin with a ‘.’ always refer to components starting from the sub-component level of the component that the
identifier is an attribute value of.

For example, assume component instance with identifier ‘N’ exists. It has two subcomponents with identifiers
‘N1’ and ‘N2’. ‘N1’ and ‘N2’ component instances both have two subcomponents which have identifiers ‘H1’ and
‘H2’. Assume that ‘.N2.H1’ is an attribute value for the component instance with identifier ‘N1’. As the identifier
begins with a ‘.’ it refers to a component starting from the same level of the ‘N1’ component instance. Both ‘N1’ and
‘N2’ component instances are sub-components of the component instance ‘N’ and are thus at the same level. Thus
‘.N2.H1’ refers to the component instance ‘H1’ which is a sub-component of the component instance ‘N2’ which is a
subcomponent of the component instance ‘N’.

Now assume that ‘N1.H2’ is an attribute value for the component instance with identifier ‘N’. As the identifier
does not begin with a ‘.’ it refers to a component starting from the sub-component level of ‘N’. Thus it refers to the
component instance ‘H2’ which is a sub-component of the component instance ‘N1’ which is a sub-component of the
component instance ‘N’.

Attribute values of the ‘idtype’ (see Section 5.9.1.5) have the following syntax:

Identifier Type Value Syntax
id type value ::= HIERARCHICALID

j “f” HIERARCHICAL ID, ... “g”
j “[” FROM KEY HIERARCHICAL ID TO KEY HIERARCHICAL ID “]”

where ‘...’ refers to a continuation of the ‘HIERARCHICALID’ value list. All values in the list must be ‘HIERAR-
CHICAL ID’s. The list may be empty.

When referring to a single component instance the first production above is used. The ‘HIERARCHICALID’
value is the identifier of the component that is being referred to.

When referring to multiple component instances where the identifiers are not contiguous, the second production
above is used. Each ‘HIERARCHICALID’ in the list is an identifier of a component that is being referred to.

When referring to multiple component instances where the identifiers are contiguous, the third production above
is used. The ‘HIERARCHICALID’ value of the ‘ FROM KEY’ specifies the first identifier of the range. The ‘HI-
ERARCHICAL ID’ value of the ‘ TO KEY’ specifies the last identifier of the range.

If one is instantiating components, the identifiers specified using the ‘ID KEY’ follow the above syntax except
that all identifiers must match the syntax of a ‘LEVELID’ (see Section 4.4.3.4).

Validity Constraint Only the last level of the ‘HIERARCHICALID’ values associated with the ‘FROM KEY’ and
‘ TO KEY’ may differ.

Validity Constraint The string prefixes of the last level of the ‘HIERARCHICALID’ values associated with the
‘ FROM KEY’ and ‘ TO KEY’ must be the same.

Validity Constraint The number suffix of the last level of the ‘HIERARCHICALID’ value for the ‘ TO KEY’
must be greater than or equal to the number suffix of the last level of the ‘HIERARCHICALID’ value for the
‘ FROM KEY’.

29

Chapter 5

A Formal Definition of the ANML Schema

A schema is a structure that defines the allowable components and attributes of a model, and how these components
may be composed together. It also specifies different constraints on attribute values and the occurrence of components.
For a model to be valid the schema structure and constraints must be followed. This section proceeds by defining the
ANML Schema syntax and then by examining each production of the syntax in detail.

5.1 ANML Schema Syntax

The ANML Schema syntax is actually a superset of the ANML syntax. The syntax for the ANML Schema using
EBNF notation can be seen in Figure 5.1. The terminal symbols and a few of the non-terminal symbols are not defined
currently to keep the overall syntax more brief. They will be defined later in the document when each production of
the syntax is explained in more detail.

5.2 Schema and Schema Specifications

The top level non-terminal of the ANML Schema syntax is ‘schema’. A schema is used to define the type of model
one wishes to create. It specifies the types of components that can be contained in a model, the attributes associated
with the components, and how components can be composed together. Various constraints can be specified for the
occurrence of components and the value of attributes.

Schema
schema ::= SCHEMA KEY “[” schema specs “]”

SCHEMA KEY ::= “ schema”

Validity Constraint: A schema must be defined within a set of ANML documents for the set of documents to be
valid.

The schema specifications are given as a key-value list. The first key-value pair of this list must be the name of the
schema. The name is used to help the user identify the schema. The ‘STRING’ value of the ‘NAME KEY’ follows
the syntax of the ‘STRING’ terminal as given in the ANML syntax.

Schema Specifications
schemaspecs ::= NAME KEY STRING schemaspeclist
NAME KEY ::= “ name”

After specifying the name of the schema the remaining specifications for the schema can be given in any order.

Schema Specification List
schemaspeclist ::= schemaspec schemaspeclist j �

30 CHAPTER 5. A FORMAL DEFINITION OF THE ANML SCHEMA

schema ::= SCHEMA KEY “[” schema specs “]”

schemaspecs ::= NAME KEY STRING schemaspeclist

schemaspeclist ::= schemaspec schemaspeclist j �

schemaspec ::= componentsj classes

components ::= COMPONENTSKEY “[” component list “]”

componentlist ::= component componentlist j �

component ::= COMPONENTNAME “[” component specs “]”

componentspecs ::= occursj �

classes ::= CLASSESKEY “[” class list “]”

classlist ::= class classlist j �

class ::= COMPONENTNAME “[” class specs “]”

classspecs ::= ISA KEY STRING classspeclist

classspeclist ::= classspec classspeclist j �

classspec ::= APP CLASS KEY STRING j MAY INSTANTIATE KEY STRING
j attributesj componentsj default

attributes ::= ATTRIBUTES KEY “[” attribute list “]”

attributelist ::= attribute attributelist j �

attribute ::= ATTRIBUTENAME “[” attribute specs “]”

attributespecs ::= ATR TYPE KEY type attributespeclist

attributespeclist ::= attributespec attributespeclist j �

attributespec ::= IS OPTIONAL KEY STRING j constraintsj attributes

default ::= DEFAULT KEY “[” key value list “]”

occurs ::= OCCURSKEY “[” occur list “]”

occur list ::= occur occurlist j �

constraints ::= CONSTRAINTSKEY “[” constraint list “]”

constraintlist ::= constraint constraintlist j �

Figure 5.1: ANML Schema Syntax

There are two remaining types of schema specifications. One must specify the components that may be instantiated
at the top level of the model. These are the components that may appear in the top level of the ‘keyvalue list’ value of
the ‘model’ production in the ANML syntax. Also, one must specify the different component classes. The component
classes represent the types of components that can be contained in the model and define the attributes associated with
the component and the valid sub-components.

Schema Specification
schemaspec ::= componentsj classes

Validity Constraint: ‘components’ specification must occur exactly once.
Validity Constraint: ‘classes’ specification must occur exactly once.

5.3 Components and Component Specifications

Components may be declared in two places within a schema definition. The first place is as a schema specification.
Components declared as a schema specification indicate what components are allowed at the top level of a model. The

5.4. CLASSES AND CLASS SPECIFICATIONS 31

second place is in a class definition. Components declared in a class definition indicate the allowable sub-components
of a component of that class. The allowable components are not restricted to the declared components alone, but to all
of the declared components descendants, so long as they are instantiable.

Components
components ::= COMPONENTSKEY “[” component list “]”

COMPONENTSKEY ::= “ components”

The components are declared in a key-value list.

Component List
componentlist ::= component componentlist

j �

Validity Constraint: A component list must contain at least one component, if ‘components’ is being used as a
schema specification. In order for a model to exist there must be at least one component that is allowed at the top level
of a model.

A component declaration involves specifying the component name which follows the syntax of the ‘COMPO-
NENT NAME’ terminal in the ANML syntax and then providing any component specifications.

Component
component ::= COMPONENTNAME “[” component specs “]”

Validity Constraint: The ‘COMPONENTNAME’ must be the name of a class defined in the same schema
definition.

Along with a component declaration, occurrence constraints may be specified. The occurrence constraints restrict
the allowable number of components of this type that may be instantiated at the level the ‘components’ are declared.
The occurrence constraints are optional.

Component Specifications
componentspecs ::= occurs

j �

Validity Constraint: The ‘occurs’ specification may occur at most once.

5.4 Classes and Class Specifications

Classes are defined within a schema definition for each type of component that can be contained within a model.

Classes
classes ::= CLASSESKEY “[” class list “]”

CLASSESKEY ::= “ classes”

Classes are defined in a key-value list.

Class List
classlist ::= class classlist

j �

Validity Constraint: A class list must contain at least one class definition. Without any component classes, there
is nothing to compose a model with.

A class definition involves specifying the name of the class which follows the syntax of the ‘COMPONENTNAME’
given in the ANML syntax, and then in specifying any class specifications.

Class
class ::= COMPONENTNAME “[” class specs “]”

32 CHAPTER 5. A FORMAL DEFINITION OF THE ANML SCHEMA

Validity Constraint: The name (‘COMPONENTNAME’) of the class must be unique among all other class
names.

Validity Constraint: No class may have the name ‘Component’ as this is the name of the base class for all classes.
The class specifications are given as a key-value list. The first specification that must be given for a class is the

parent class specification. This is done using the ‘ISA KEY’. The ‘STRING’ value of the ‘ISA KEY’ specifies the
name of the parent class. All classes are derived from the base class ‘Component’. Thus if the class is not a child class
of any of the defined classes it is a child class of the ‘Component’ class and ‘Component’ must be given as the value
of the ‘ ISA KEY’.

The class system for ANML is hierarchical. All classes inherit the attributes and allowable sub-components of the
parent class.

Class Specifications
classspecs ::= ISA KEY STRING classspeclist
ISA KEY ::= “ isa”

Validity Constraint: The ‘STRING’ value associated with the ‘ISA KEY’ must be the name of a defined class
or the base class ‘Component’.

Validity Constraint: No cycles may exist in the class hierarchy. i.e. A class may not be an ancestor of itself.
The remaining class specifications may be given in any order.

Class Specification List
classspeclist ::= classspec classspeclist

j �

Class Specification
classspec ::= APP CLASS KEY STRING

j MAY INSTANTIATE KEY STRING
j attributes
j components
j default

APP CLASS KEY ::= “ appclasskey”
MAY INSTANTIATE KEY ::= “ may instantiatekey”

There are five remaining optional class specifications. One can specify the name of the application class that
corresponds to the ANML component class using the ‘APP CLASS KEY’. ANML has been designed so the the
class hierarchy of the ANML components corresponds to the class hierarchy of the application that ANML is being
used for. As the class name within the application may be different, the option to specify it is given.

The ‘ MAY INSTANTIATE KEY’ can be used to specify whether or not a component of this class can be in-
stantiated. By default, components can be instantiated for all classes, so this only needs to be used if one wishes to
indicate the contrary. The ‘STRING’ value associated with the ‘MAY INSTANTIATE KEY’ is a boolean value. If
one wishes to indicate that components of this class may not be instantiated, then ‘false’ is entered as the ‘STRING’
value. This specification does not affect whether or not the child classes are instantiable, just the current class.

This is a useful feature if wanting to define a class which is used to categorize a set of classes, but means
nothing if instantiated. Consider an example where ‘Node’ is a class and ‘Router’ and ‘Host’ are subclasses of
‘Node’. ‘Node’ categorizes ‘Router’ and ‘Host’ but doesn’t mean anything if instantiated on its own. Therefore the
‘ MAY INSTANTIATE KEY’ could be set to ‘false’ for ‘Node’. ‘Router’ and ‘Host’ instances would still be allowed.

Attributes associated with this type of component, the allowable sub-components, and the default attribute values
may also be specified.

Validity Constraint: The ‘STRING’ value associated with the ‘MAY INSTANTIATE KEY’ must be a boolean
value. That is it must be ‘true’ or ‘false’.

5.5. ATTRIBUTES AND ATTRIBUTE SPECIFICATIONS 33

5.5 Attributes and Attribute Specifications

Attributes are defined within a class definition to specify information and characteristics which are associated with the
class.

Attributes
attributes ::= ATTRIBUTES KEY “[” attribute list “]”

ATTRIBUTES KEY ::= “ attributes”

Attributes are defined in a key-value list.

Attribute List
attributelist ::= attribute attributelist

j �

Defining an attribute involves specifying the attribute name which follows the syntax for the ‘ATTRIBUTENAME’
syntax, and then giving the attribute specifications.

Attribute List
attribute ::= ATTRIBUTENAME “[” attribute specs “]”

Validity Constraint: The name (‘ATTRIBUTENAME’) of the attribute must be unique among all the other
attribute names for a given class and its ancestor classes.

The attribute specifications are given as a key-value list. The first key-value pair of the list specifies the type of the
attribute. The ’ATR TYPE KEY’ is used to specify this. An attribute can be any one of the types outlined in Section
5.9.

Attribute Specifications
attributespecs ::= ATR TYPE KEY type attributespeclist

ATR TYPE KEY ::= “ atr type”

The remaining optional attribute specifications can be given in any order.

Attribute Specification List
attributespeclist ::= attributespec attributespeclist

j �

Attribute Specification
attributespec ::= IS OPTIONAL KEY STRING

j constraints
j attributes

There are three remaining optional attribute specifications. One can specify whether the attribute is optional or not,
using the ‘IS OPTIONAL KEY’. By default, an attribute is mandatory, so one only need to specify this if the attribute
is optional. To specify that the attribute is optional, ‘true’ must be given as the value for the ‘IS OPTIONAL KEY’.
When an attribute is marked as being optional, it means that when creating an instance of a component for which this
is an attribute, the attribute does not have to be assigned. If the attribute is mandatory, the attribute must be assigned
in the component instance.

If the attribute is not a composite attribute value constraints on the attribute can also be specified. If the attribute is
a composite attribute, then the internal attributes can be specified.

Validity Constraint: ‘attributes’ must and may only be specified if the attribute type is ‘compatr’.
Validity Constraint: ‘constraints’ may only be specified if the attribute type is not ‘compatr’.
Validity Constraint: Only one of ‘attributes’ or ‘constraints’ may be specified.
Validity Constraint: The STRING value associated with the ‘IS OPTIONAL KEY’ must be a boolean value.

That is, it must be ‘true’ or ‘false’.

34 CHAPTER 5. A FORMAL DEFINITION OF THE ANML SCHEMA

5.6 Default Values

In a class definition, default values may be specified for the attributes and inherited attributes of a component class.
Default values given in ancestor classes also apply to this class. A default value given in this class overrides the default
value given in an ancestor class and also applies to descendant classes.

The default attribute values are given as a key-value pair list, following the syntax for ‘keyvalue list’ as given in
the ANML syntax. Only attributes may be assigned default values. Optional attributes should not be given default
values as they would no longer be optional.

Default Values
default ::= DEFAULT KEY “[” key value list “]”

DEFAULT KEY ::= “ default”

Validity Constraint: All keys in the default ‘keyvalue list’ must be the names of attributes or inherited attributes
of the class the default values are being assigned for.

Validity Constraint: Attributes that are of type ‘idtype’ may not be given default values.

5.7 Component Occurrence Constraints

Occurrence constraints can be defined within a component declaration to restrict the number of occurrences of the
component and its descendant components.

Occurrence Constraints
occurs ::= OCCURSKEY “[” occur list “]”

OCCURS ::= “occurs”

Occurrence constraints are defined in a key-value pair list.

Occurrence List
occur list ::= occur occurlist

j �

There are three different occurrence constraints. One is to specify an exact number of occurrences, one to spec-
ify the minimum number of occurrences and one to specify the maximum number of occurrences. As occurrence
constraints are optional, the default minimum and maximum occurrence constraints are 0 and1 respectively.

Occurrence Constraint
occur ::= NUM OCCURKEY STRING

j MIN OCCUR KEY STRING
j MAX OCCURKEY STRING

5.7.1 NUM OCCUR KEY

To specify that an exact number of sub-components of a certain type must be instantiated within a component or
within the top level of the model, the ‘NUM OCCUR KEY’ can be used. The associated ‘STRING’ value is an
integer which is greater than zero indicating the number of occurrences allowed.

Number Occurrence Constraint
occur ::= NUM OCCUR KEY STRING

NUM OCCUR KEY ::= “ num occur”

Validity Constraint: The ‘STRING’ value associated with the ‘NUM OCCUR KEY’ must be an integer that is
greater than zero.

5.8. ATTRIBUTE VALUE CONSTRAINTS 35

5.7.2 MIN OCCUR KEY

To specify that a minimum number of sub-components of a certain type must be instantiated within a component
or within the top level of the model, the ‘MIN OCCUR KEY’ can be used. The associated ’STRING’ value is an
integer which is greater than or equal to zero indicating the minimum number of occurrences allowed. By default, the
minimum number of occurrences allowed is zero.

Minimum Occurrence Constraint
occur ::= MIN OCCUR KEY STRING

MIN OCCUR KEY ::= “ min occur”

Validity Constraint: The ‘STRING’ value associated with the ‘MIN OCCUR KEY’ must be an integer that is
greater than or equal to zero.

Validity Constraint: The ‘ MIN OCCUR KEY’ may not be defined if the ‘NUMOCCUR KEY’ has been de-
fined.

Validity Constraint: The value of the ‘MIN OCCUR KEY’ must be less than or equal to the value of the
‘ MAX OCCUR KEY’, if defined.

5.7.3 MAX OCCUR KEY

To specify that a maximum number of sub-components of a certain type may be instantiated within a component or
within the top level of the model, the ‘MAX OCCUR KEY’ can be used. The associated ‘STRING’ value is an
integer which is greater than zero indicating the maximum number of occurrences allowed. By default, the maximum
number of occurrences allowed is infinity.

Maximum Occurrence Constraint
occur ::= MAX OCCUR KEY STRING

MAX OCCUR KEY ::= “ max occur”

Validity Constraint: The ‘STRING’ value associated with the ‘MAX OCCUR KEY’ must be an integer that is
greater than zero.

Validity Constraint: The ‘ MAX OCCUR KEY’ may not be defined if the ‘NUMOCCUR KEY’ has been
defined.

Validity Constraint: The value of the ‘MAX OCCUR KEY’ must be greater than or equal to the value of the
‘ MIN OCCUR KEY’, if defined.

5.8 Attribute Value Constraints

Attribute value constraints can be defined within an attribute definition to restrict the allowed value of the attribute.

Attribute Value Constraints
constraints ::= CONSTRAINTSKEY “[” constraint list “]”

CONSTRAINT KEY ::= “ constraints”

Attribute value constraints are defined in a key-value pair list.

Attribute Value Constraint List
constraintlist ::= constraint constraintlist

j �

There are many different types of attribute value constraints that can be defined. This allows for many different
aspects of a model to be validated. The constraints that can be defined for an attribute depend on the attribute type as
will be explained when each constraint is examined in more detail.

36 CHAPTER 5. A FORMAL DEFINITION OF THE ANML SCHEMA

Attribute Value Constraint
constraint ::= LENGTH KEY STRING

j MIN LENGTH KEY STRING
j MAX LENGTH KEY STRING
j NUM ENTRIESKEY STRING
j MIN ENTRIESKEY STRING
j MAX ENTRIESKEY STRING
j NUM IDS KEY STRING
j MIN IDS KEY STRING
j MAX IDS KEY STRING
j MIN INCLUSIVE KEY STRING
j MIN EXCLUSIVE KEY STRING
j MAX INCLUSIVE KEY STRING
j MAX EXCLUSIVE KEY STRING
j VALID CLASSESKEY “ f” value list “g”
j ONE OF KEY “ f” value list “g”

5.8.1 LENGTH KEY

The ‘ LENGTH KEY’ can be defined for the following types of attributes:

� ‘string’

� ‘string list’

The ‘STRING’ value associated with the ‘LENGTH KEY’ is an integer greater than zero that specifies the exact
length the string must be. Length refers to the number of characters in the string. For the case when the attribute is of
the ‘string list’ type, the length restriction applies to each string in the list. That is each string in the list must be the
specified length to be valid.

Length Constraint
constraint ::= LENGTH KEY STRING

LENGTH KEY ::= “ length”

Validity Constraint: The ‘STRING’ value associated with the ‘LENGTH KEY’ must be an integer that is greater
than zero.

Validity Constraint: The ‘ LENGTH KEY’ can only be defined for attributes of type ‘string’ and ‘stringlist’.

5.8.2 MIN LENGTH KEY

The ‘ MIN LENGTH KEY’ can be defined for the following types of attributes:

� ‘string’

� ‘string list’

The ‘STRING’ value associated with the ‘MIN LENGTH KEY’ is an integer greater than or equal to zero that
specifies the minimum length the string must be. Length refers to the number of characters in the string. By default,
the minimum allowed length of a string is zero characters. For the case when the attribute is of the ‘stringlist’ type,
the length restriction applies to each string in the list. That is each string in the list must be at least the specified length
to be valid.

Minimum Length Constraint
constraint ::= MIN LENGTH KEY STRING

MIN LENGTH KEY ::= “ min length”

5.8. ATTRIBUTE VALUE CONSTRAINTS 37

Validity Constraint: The ‘STRING’ value associated with the ‘MIN LENGTH KEY’ must be an integer that is
greater than or equal to zero.

Validity Constraint: The ‘ MIN LENGTH KEY’ may not be defined when the ‘LENGTH KEY’ is defined.
Validity Constraint: The value of the ‘MIN LENGTH KEY’ must be less than or equal to the value of the

‘ MAX LENGTH KEY’, if defined.
Validity Constraint: The ‘ MIN LENGTH KEY’ can only be defined for attributes of type ‘string’ and ‘stringlist’.

5.8.3 MAX LENGTH KEY

The ‘ MAX LENGTH KEY’ can be defined for the following types of attributes:

� ‘string’

� ‘string list’

The ‘STRING’ value associated with the ‘MAX LENGTH KEY’ is an integer greater than zero that specifies the
maximum length the string may be. Length refers to the number of characters in the string. By default, the maximum
allowed length of a string is infinity. For the case when the attribute is of the ‘stringlist’ type, the length restriction
applies to each string in the list. That is each string in the list may be at most the specified length to be valid.

Maximum Length Constraint
constraint ::= MAX LENGTH KEY STRING

MAX LENGTH KEY ::= “ max length”

Validity Constraint: The ‘STRING’ value associated with the ‘MAX LENGTH KEY’ must be an integer that
is greater than or equal to zero.

Validity Constraint: The ‘ MAX LENGTH KEY’ may not be defined when the ‘LENGTH KEY’ is defined.
Validity Constraint: The value of the ‘MAX LENGTH KEY’ must be greater than or equal to the value of the

‘ MIN LENGTH KEY’, if defined.
Validity Constraint: The ‘ MAX LENGTH KEY’ can only be defined for attributes of type ‘string’ and ‘stringlist’.

5.8.4 NUM ENTRIES KEY

The ‘ NUM ENTRIESKEY’ can be defined for the following types of attributes:

� ‘integer list’

� ‘real list’

� ‘booleanlist’

� ‘string list’

The ‘STRING’ value associated with the ‘NUM ENTRIESKEY’ is an integer greater than zero that specifies the
exact number of entries that must be contained in the list.

Number of Entries Constraint
constraint ::= NUM ENTRIES STRING

NUM ENTRIESKEY ::= “ num entries”

Validity Constraint: The ‘STRING’ value associated with the ‘NUM ENTRIESKEY’ must be an integer that
is greater than zero.

Validity Constraint: The ‘ NUM ENTRIESKEY’ can only be defined for attributes of type ‘integerlist’, ‘real list’,
‘booleanlist’ and ‘string list’.

38 CHAPTER 5. A FORMAL DEFINITION OF THE ANML SCHEMA

5.8.5 MIN ENTRIES KEY

The ‘ MIN ENTRIESKEY’ can be defined for the following types of attributes:

� ‘integer list’

� ‘real list’

� ‘booleanlist’

� ‘string list’

The ‘STRING’ value associated with the ‘MIN ENTRIESKEY’ is an integer greater than or equal to zero that
specifies the minimum number of entries that must be contained in the list. By default, the minimum number of entries
allowed in a list is zero.

Minimum Entries Constraint
constraint ::= MIN ENTRIES STRING

MIN ENTRIESKEY ::= “ min entries”

Validity Constraint: The ‘STRING’ value associated with the ‘MIN ENTRIESKEY’ must be an integer that is
greater than or equal to zero.

Validity Constraint: The ‘ MIN ENTRIESKEY’ may not be defined when the ‘NUM ENTRIESKEY’ is
defined.

Validity Constraint: The value of the ‘MIN ENTRIESKEY’ must be less than or equal to the value of the
‘ MAX ENTRIESKEY’, if defined.

Validity Constraint: The ‘ MIN ENTRIESKEY’ can only be defined for attributes of type ‘integerlist’, ‘real list’,
‘booleanlist’ and ‘string list’.

5.8.6 MAX ENTRIES KEY

The ‘ MAX ENTRIESKEY’ can be defined for the following types of attributes:

� ‘integer list’

� ‘real list’

� ‘booleanlist’

� ‘string list’

The ‘STRING’ value associated with the ‘MAX ENTRIES KEY’ is an integer greater than zero that specifies the
maximum number of entries that may be contained in the list. By default, the maximum number of entries allowed in
a list is infinity.

Maximum Entries Constraint
constraint ::= MAX ENTRIES STRING

MAX ENTRIESKEY ::= “ max entries”

Validity Constraint: The ‘STRING’ value associated with the ‘MAX ENTRIESKEY’ must be an integer that
is greater than zero.

Validity Constraint: The ‘ MAX ENTRIESKEY’ may not be defined when the ‘NUM ENTRIESKEY’ is
defined.

Validity Constraint: The value of the ‘MAX ENTRIESKEY’ must be greater than or equal to the value of the
‘ MIN ENTRIESKEY’, if defined.

Validity Constraint: The ‘ MAX ENTRIES KEY’ can only be defined for attributes of type ‘integerlist’, ‘real list’,
‘booleanlist’ and ‘string list’.

5.8. ATTRIBUTE VALUE CONSTRAINTS 39

5.8.7 NUM IDS KEY

The ‘ NUM IDS KEY’ can be defined for the following types of attributes:

� ‘id type’

The ‘STRING’ value associated with the ‘NUM IDS KEY’ is an integer greater than zero that specifies the exact
number of identifiers that must be specified in the attribute’s value.

Number of Identifiers Constraint
constraint ::= NUM IDS STRING

NUM IDS KEY ::= “ num ids”

Validity Constraint: The ‘STRING’ value associated with the ‘NUM IDS KEY’ must be an integer that is
greater than zero.

Validity Constraint: The ‘ NUM IDS KEY’ can only be defined for attributes of type ‘idtype’.

5.8.8 MIN IDS KEY

The ‘ MIN IDS KEY’ can be defined for the following types of attributes:

� ‘id type’

The ‘STRING’ value associated with the ‘MIN IDS KEY’ is an integer greater than or equal to zero that specifies
the minimum number of identifiers that must be specified in the attribute’s value. By default, the minimum number of
identifiers allowed is zero.

Minimum Identifiers Constraint
constraint ::= MIN IDS STRING

MIN IDS KEY ::= “ min ids”

Validity Constraint: The ‘STRING’ value associated with the ‘MIN IDS KEY’ must be an integer that is greater
than or equal to zero.

Validity Constraint: The ‘ MIN IDS KEY’ may not be defined when the ‘NUM IDS KEY’ is defined.
Validity Constraint: The value of the ‘MIN IDS KEY’ must be less than or equal to the value of the

‘ MAX IDS KEY’, if defined.
Validity Constraint: The ‘ MIN IDS KEY’ can only be defined for attributes of type ‘idtype’.

5.8.9 MAX IDS KEY

The ‘ MAX IDS KEY’ can be defined for the following types of attributes:

� ‘id type’

The ‘STRING’ value associated with the ‘MAX IDS KEY’ is an integer greater than zero that specifies the
maximum number of identifiers that may be specified in the attribute’s value. By default, the maximum number of
identifiers allowed is infinity.

Maximum Identifiers Constraint
constraint ::= MAX IDS STRING

MAX IDS KEY ::= “ max ids”

Validity Constraint: The ‘STRING’ value associated with the ‘MAX IDS KEY’ must be an integer that is
greater than zero.

Validity Constraint: The ‘ MAX IDS KEY’ may not be defined when the ‘NUM IDS KEY’ is defined.
Validity Constraint: The value of the ‘MAX IDS KEY’ must be greater than or equal to the value of the

‘ MIN IDS KEY’, if defined.
Validity Constraint: The ‘ MAX IDS KEY’ may only be defined for attributes of type ‘idtype’.

40 CHAPTER 5. A FORMAL DEFINITION OF THE ANML SCHEMA

5.8.10 MIN INCLUSIVE KEY

The ‘ MIN INCLUSIVE KEY’ can be defined for the following types of attributes:

� ‘integer’

� ‘real’

� ‘integer list’

� ‘real list’

The ‘STRING’ value associated with the ‘MIN INCLUSIVE KEY’ is an integer or a real number, depending
on the attribute type, that indicates the inclusive minimum value allowed for the attribute. That is, the value of the
attribute must be greater than or equal to the inclusive minimum specified. For attributes that are of the ‘integerlist’
or ‘real list’ type, the inclusive minimum applies to all numbers in the list. That is, each number in the list must be
greater than or equal to the inclusive minimum value.

Minimum Inclusive Constraint
constraint ::= MIN INCLUSIVE STRING

MIN INCLUSIVE KEY ::= “ min inclusive”

Validity Constraint: The ‘STRING’ value associated with the ‘MIN INCLUSIVE KEY’ must be an integer
value if the attribute is of the ‘integer’ or ‘integerlist’ types.

Validity Constraint: The ‘STRING’ value associated with the ‘MIN INCLUSIVE KEY’ must be a real value if
the attribute is of the ‘real’ or ‘reallist’ types.

Validity Constraint: The ‘ MIN INCLUSIVE KEY’ may not be defined if the ‘MIN EXCLUSIVE KEY’ is
defined.

Validity Constraint: The value of the ‘MIN INCLUSIVE KEY’ must be less than or equal to the value of the
‘ MAX INCLUSIVE KEY’, if defined.

Validity Constraint: The value of the ‘MIN INCLUSIVE KEY’ must be less than the value of the
’ MAX EXCLUSIVE KEY’, if defined.

Validity Constraint: The ‘ MIN INCLUSIVE KEY’ may only be defined for attributes of type ‘integer’, ‘real’,
‘integer list’ and ‘real list’.

5.8.11 MIN EXCLUSIVE KEY

The ‘ MIN EXCLUSIVE KEY’ can be defined for the following types of attributes:

� ‘integer’

� ‘real’

� ‘integer list’

� ‘real list’

The ‘STRING’ value associated with the ‘MIN EXCLUSIVE KEY’ is an integer or a real number, depending
on the attribute type, that indicates the exclusive minimum value allowed for the attribute. That is, the value of the
attribute must be greater than the exclusive minimum specified. For attributes that are of the ‘integerlist’ or ‘real list’
type, the exclusive minimum applies to all numbers in the list. That is, each number in the list must be greater than the
exclusive minimum value.

Minimum Exclusive Constraint
constraint ::= MIN EXCLUSIVE STRING

MIN EXCLUSIVE KEY ::= “ min exclusive”

Validity Constraint: The ‘STRING’ value associated with the ‘MIN EXCLUSIVE KEY’ must be an integer
value if the attribute is of the ‘integer’ or ‘integerlist’ types.

Validity Constraint: The ‘STRING’ value associated with the ‘MIN EXCLUSIVE KEY’ must be a real value
if the attribute is of the ‘real’ or ‘reallist’ types.

5.8. ATTRIBUTE VALUE CONSTRAINTS 41

Validity Constraint: The ‘ MIN EXCLUSIVE KEY’ may not be defined if the ‘MIN INCLUSIVE KEY’ is
defined.

Validity Constraint: The value of the ‘MIN EXCLUSIVE KEY’ must be less than the value of the
‘ MAX INCLUSIVE KEY’, if defined.

Validity Constraint: The value of the ‘MIN EXCLUSIVE KEY’ must be less than the value of the
’ MAX EXCLUSIVE KEY’, if defined.

Validity Constraint: The ‘ MIN EXCLUSIVE KEY’ may only be defined for attributes of type ‘integer’, ‘real’,
‘integer list’ and ‘real list’.

5.8.12 MAX INCLUSIVE KEY

The ‘ MAX INCLUSIVE KEY’ can be defined for the following types of attributes:

� ‘integer’

� ‘real’

� ‘integer list’

� ‘real list’

The ‘STRING’ value associated with the ‘MAX INCLUSIVE KEY’ is an integer or a real number, depending
on the attribute type, that indicates the inclusive maximum value allowed for the attribute. That is, the value of the
attribute must be less than or equal to the inclusive maximum specified. For attributes that are of the ‘integerlist’ or
‘real list’ type, the inclusive maximum applies to all numbers in the list. That is, each number in the list must be less
than or equal to the inclusive maximum value.

Maximum Inclusive Constraint
constraint ::= MAX INCLUSIVE STRING

MAX INCLUSIVE KEY ::= “ max inclusive”

Validity Constraint: The ‘STRING’ value associated with the ‘MAX INCLUSIVE KEY’ must be an integer
value if the attribute is of the ‘integer’ or ‘integerlist’ types.

Validity Constraint: The ‘STRING’ value associated with the ‘MAX INCLUSIVE KEY’ must be a real value
if the attribute is of the ‘real’ or ‘reallist’ types.

Validity Constraint: The ‘ MAX INCLUSIVE KEY’ may not be defined if the ‘MAX EXCLUSIVE KEY’ is
defined.

Validity Constraint: The value of the ‘MAX INCLUSIVE KEY’ must be greater than or equal to the value of
the ‘ MIN INCLUSIVE KEY’, if defined.

Validity Constraint: The value of the ‘MAX INCLUSIVE KEY’ must be greater than the value of the
’ MIN EXCLUSIVE KEY’, if defined.

Validity Constraint: The ‘ MAX INCLUSIVE KEY’ may only be defined for attributes of type ‘integer’, ‘real’,
‘integer list’ and ‘real list’.

5.8.13 MAX EXCLUSIVE KEY

The ‘ MAX EXCLUSIVE KEY’ can be defined for the following types of attributes:

� ‘integer’

� ‘real’

� ‘integer list’

� ‘real list’

The ‘STRING’ value associated with the ‘MAX EXCLUSIVE KEY’ is an integer or a real number, depending
on the attribute type, that indicates the exclusive maximum value allowed for the attribute. That is, the value of the
attribute must be less than the exclusive maximum specified. For attributes that are of the ‘integerlist’ or ‘real list’
type, the exclusive maximum applies to all numbers in the list. That is, each number in the list must be less than the
exclusive maximum value.

42 CHAPTER 5. A FORMAL DEFINITION OF THE ANML SCHEMA

Maximum Exclusive Constraint
constraint ::= MAX EXCLUSIVE STRING

MAX EXCLUSIVE KEY ::= “ max exclusive”

Validity Constraint: The ‘STRING’ value associated with the ‘MAX EXCLUSIVE KEY’ must be an integer
value if the attribute is of the ‘integer’ or ‘integerlist’ types.

Validity Constraint: The ‘STRING’ value associated with the ‘MAX EXCLUSIVE KEY’ must be a real value
if the attribute is of the ‘real’ or ‘reallist’ types.

Validity Constraint: The ‘ MAX EXCLUSIVE KEY’ may not be defined if the ‘MAX INCLUSIVE KEY’ is
defined.

Validity Constraint: The value of the ‘MAX EXCLUSIVE KEY’ must be greater than the value of the
‘ MIN INCLUSIVE KEY’, if defined.

Validity Constraint: The value of the ‘MAX EXCLUSIVE KEY’ must be greater than the value of the
’ MIN EXCLUSIVE KEY’, if defined.

Validity Constraint: The ‘ MAX EXCLUSIVE KEY’ may only be defined for attributes of type ‘integer’, ‘real’,
‘integer list’ and ‘real list’.

5.8.14 VALID CLASSES KEY

The ‘ VALID CLASSESKEY’ can be defined for the following types of attributes:

� ‘id type’

The ‘valuelist’ associated with the ‘VALID CLASSESKEY’ is a list of the classes that the components, referred
to by the identifiers specified in the value of the attribute, may be instances of. (The ‘valuelist’ referred to here is a
non-terminal in the ANML syntax.) Putting a class in this list automatically includes all descendant classes as well.

Valid Classes Constraint
constraint ::= VALID CLASSES “f” value list “g”

VALID CLASSESKEY ::= “ valid classes”

Validity Constraint: Each entry of the ‘valuelist’ associated with the ‘VALID CLASSESKEY’ must be the
name of a class that has been defined in the schema definition.

Validity Constraint: The ‘ VALID CLASSESKEY’ can only be defined for attributes of type ‘idtype’.

5.8.15 ONE OF KEY

The ‘ ONE OF KEY’ can be defined for the following types of attributes:

� ‘integer’

� ‘real’

� ‘string’

� ‘integer list’

� ‘real list’

� ‘string list’

The ‘valuelist’ associated with the ‘ONE OF KEY’ is a list of allowable values for the attribute. (The ‘valuelist’
referred to here is a non-terminal in the ANML syntax.) This means that the value of the attribute must be one of the
values specified by the ‘ONE OF KEY’. For the case when the attribute is of one of the list types, each value in the
list must be one of the values specified by the ‘ONE OF KEY’.

One Of Constraint
constraint ::= ONE OF KEY “ f” value list “g”

ONE OF KEY ::= “ oneof”

5.9. ATTRIBUTE TYPES 43

Validity Constraint: Each entry of the ‘valuelist’ associated with the ‘ONE OF KEY’ must be an integer if the
attribute type is ‘integer’ or ‘integerlist’.

Validity Constraint: Each entry of the ‘valuelist’ associated with the ‘ONE OF KEY’ must be a real number if
the attribute type is ‘real’ or ‘reallist’.

Validity Constraint: Each entry of the ‘valuelist’ associated with the ‘ONE OF KEY’ must be a string if the
attribute type is ‘string’ or ‘stringlist’.

Validity Constraint: If ‘ ONE OF KEY’ is defined, no other attribute value constraints may be defined except
for ‘ NUM ENTRIESKEY’, ‘ MIN ENTRIESKEY’ and ‘ MAX ENTRIESKEY’.

Validity Constraint: The ‘ ONE OF KEY’ can only be defined for attributes of type ‘integer’, ‘real’, ‘string’,
‘integer list’, ‘real list’ and ‘string list’.

5.9 Attribute Types

Every attribute must be assigned a certain type, to help identify and restrict the attribute value contents. Attribute types
are divided into two main categories: primitive types and compound types.

Attribute Types
type ::= primtype

j comptype

5.9.1 Primitive Attribute Types

Primitive types are the basic types which are indivisible.

Primitive Attribute Types
prim type ::= INTEGERTYPE

j REAL TYPE
j BOOLEAN TYPE
j STRING TYPE
j ID TYPE

5.9.1.1 INTEGER TYPE

One of the primitive attribute types is the ‘INTEGERTYPE’. The value of an attribute of this type must be a single
integer, as defined mathematically.

Integer Type
INTEGER TYPE ::= “integer”

An integer must match the following regular expression.

Regular Expression for Integer
INTEGER ::= [-+]?[0-9]+

The following constraints can be defined for attributes of the ‘integer’ type:

� ‘ MIN INCLUSIVE KEY’

� ‘ MIN EXCLUSIVE KEY’

� ‘ MAX INCLUSIVE KEY’

� ‘ MAX EXCLUSIVE KEY’

� ‘ ONE OF KEY’

44 CHAPTER 5. A FORMAL DEFINITION OF THE ANML SCHEMA

5.9.1.2 REAL TYPE

Another primitive attribute type is the ‘REALTYPE’. The value of an attribute of this type must be a single real
number as defined mathematically.

Real Type
REAL TYPE ::= “real”

A real number must match the following regular expression.

Regular Expression for Real Number
REAL ::= [-+]?[0-9]*(”.”[0-9]*)?([eE][-+]?[0-9]+)?

The following constraints can be defined for attributes of the ‘real’ type:

� ‘ MIN INCLUSIVE KEY’

� ‘ MIN EXCLUSIVE KEY’

� ‘ MAX INCLUSIVE KEY’

� ‘ MAX EXCLUSIVE KEY’

� ‘ ONE OF KEY’

5.9.1.3 BOOLEAN TYPE

Another primitive attribute type is the ’BOOLEANTYPE’. The value of an attribute of this type indicates that some-
thing is either true or false.

Boolean Type
BOOLEAN TYPE ::= “boolean”

A boolean value must match the following syntax.

Boolean Value Syntax
BOOLEAN ::= ‘true’

j ‘false’

No constraints may be defined for attributes of the ‘boolean’ type. A boolean value is simply ‘true’ or ‘false’.

5.9.1.4 STRINGTYPE

Another primitive attribute type is the ‘STRINGTYPE’. The value of an attribute of this type is a string of characters.

String Type
STRING TYPE ::= “string”

A string value follows the syntax of the ‘STRING’ terminal defined in the ANML syntax. See Figure 4.1.
The following constraints can be defined for attributes of the ‘string’ type:

� ‘ LENGTH KEY’

� ‘ MIN LENGTH KEY’

� ‘ MAX LENGTH KEY’

� ‘ ONE OF KEY’

5.9. ATTRIBUTE TYPES 45

5.9.1.5 ID TYPE

Another primitive attribute type is the ‘IDTYPE’. The ‘ID TYPE’ is the most complex of all the primitive datatypes,
but is given it’s own unique datatype to serve the special purpose of identifying different components within a model,
and to validate that the component exists.

ID Type
ID TYPE ::= “id type”

Attributes of the ‘idtype’ must match the following syntax:

Id Type Value Syntax
id type value ::= HIERARCHICALID

j “f” HIERARCHICAL ID, ... “g”
j “[” FROM KEY HIERARCHICAL ID TO KEY HIERARCHICAL ID “]”

The value of an attribute of the ‘idtype’ may be a single identifier, a list of identifiers, or a range of identifiers.
More information on identifiers and their syntax can be seen in Section 4.7.

Part of validating an attribute value of the ‘idtype’, besides any constraints which have been specified, is checking
to make sure that components with the given identifiers actually exist.

The following constraints can be defined for attributes of the ‘idtype’:

� ‘ NUM IDS KEY’

� ‘ MIN IDS KEY’

� ‘ MAX IDS KEY’

� ‘ VALID CLASSESKEY’

5.9.2 Compound Attribute Types

Compound types are types which are built using primitive types.

Compound Attribute Types
comptype ::= INTEGERLIST TYPE

j REAL LIST TYPE
j BOOLEAN LIST TYPE
j STRING LIST TYPE
j COMP ATR TYPE

5.9.2.1 INTEGER LIST TYPE

One compound attribute type is the ‘INTEGERLIST TYPE’. An attribute of this type has a value which is a list of
values of the ‘INTEGERTYPE’.

Integer List Type
INTEGER LIST TYPE ::= “integerlist”

Attributes of the ‘integerlist type’ must match the following syntax:

Integer List Syntax
integerlist syntax ::= “f” value list “g”

46 CHAPTER 5. A FORMAL DEFINITION OF THE ANML SCHEMA

where each entry in the list must be an ‘INTEGER’.
The following constraints can be defined for attributes of the ‘integerlist’ type:

� ‘ NUM ENTRIESKEY’

� ‘ MIN ENTRIESKEY’

� ‘ MAX ENTRIESKEY’

� ‘ MIN INCLUSIVE KEY’

� ‘ MIN EXCLUSIVE KEY’

� ‘ MAX INCLUSIVE KEY’

� ‘ MAX EXCLUSIVE KEY’

� ‘ ONE OF KEY’

5.9.2.2 REAL LIST TYPE

Another compound attribute type is the ‘REALLIST TYPE’. An attribute of this type has a value which is a list of
values of the ‘REALTYPE’.

Real List Type
REAL LIST TYPE ::= “real list”

Attributes of the ‘reallist type’ must match the following syntax:

Real List Syntax
real list syntax ::= “f” value list “g”

where each entry in the list must be an ‘REAL’ number.
The following constraints can be defined for attributes of the ‘reallist’ type:

� ‘ NUM ENTRIESKEY’

� ‘ MIN ENTRIESKEY’

� ‘ MAX ENTRIESKEY’

� ‘ MIN INCLUSIVE KEY’

� ‘ MIN EXCLUSIVE KEY’

� ‘ MAX INCLUSIVE KEY’

� ‘ MAX EXCLUSIVE KEY’

� ‘ ONE OF KEY’

5.9.2.3 BOOLEAN LIST TYPE

Another compound attribute type is the ‘BOOLEANLIST TYPE’. An attribute of this type has a value which is a list
of values of the ‘BOOLEANTYPE’.

Boolean List Type
BOOLEAN LIST TYPE ::= “booleanlist”

5.9. ATTRIBUTE TYPES 47

Attributes of the ‘booleanlist type’ must match the following syntax:

Boolean List Syntax
booleanlist syntax ::= “f” value list “g”

where each entry in the list must be a ‘BOOLEAN’.
The following constraints can be defined for attributes of the ‘booleanlist’ type:

� ‘ NUM ENTRIESKEY’

� ‘ MIN ENTRIESKEY’

� ‘ MAX ENTRIESKEY’

5.9.2.4 STRINGLIST TYPE

Another compound attribute type is the ‘STRINGLIST TYPE’. An attribute of this type has a value which is a list of
values of the ‘STRINGTYPE’.

String List Type
STRING LIST TYPE ::= “string list”

Attributes of the ‘stringlist type’ must match the following syntax:

String List Syntax
string list syntax ::= “f” value list “g”

where each entry in the list must be a ‘STRING’.
The following constraints can be defined for attributes of the ‘stringlist’ type:

� ‘ NUM ENTRIESKEY’

� ‘ MIN ENTRIESKEY’

� ‘ MAX ENTRIESKEY’

� ‘ LENGTH KEY’

� ‘ MIN LENGTH KEY’

� ‘ MAX LENGTH KEY’

� ‘ ONE OF KEY’

5.9.2.5 COMPATR TYPE

Another compound attribute type is the ‘COMPATR TYPE’ or composite attribute type. An attribute of this type is
an attribute which is composed of inner attributes.

Composite Attribute Type
COMP ATR TYPE ::= “compatr”

Attributes of the ‘compatr type’ must match the following syntax:

String List Syntax
string list syntax ::= “[” key value list “]”

where each key-value pair must be one of the defined inner attributes.
No constraints may be defined for attributes of the ‘compatr type’. Constraints may be defined for inner attributes

though, so long as they are not of the ‘compatr type’ themselves.

48 CHAPTER 5. A FORMAL DEFINITION OF THE ANML SCHEMA

REFERENCES 49

References

[1] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski. Towards realistic million-node internet simulations. In
Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications,
1999.

[2] C. Kiddle, R. Simmonds, D. K. Wilson, and B. Unger. ANML: A language for describing networks. InProceed-
ings of the Ninth International Symposium on Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems, pages 135–141, 2001.

[3] J. R. Levine, T. Mason, and D. Brown.lex & yacc. O’Reilly & Associates, Inc., Sebastopol, California, second
edition, 1992.

[4] A. Ogielski. Domain Modeling Language (DML) reference manual, 1999. Retrieved January 3, 2000, from the
World Wide Web:
http://www.ssfnet.org/SSFdocs/dmlReference.html.

[5] R. Simmonds, R. Bradford, and B. Unger. Applying parallel discrete event simulation to network emulation. In
Proceedings of the 14th Workshop on Parallel and Distributed Simulation, pages 15–22, 2000.

[6] B. Unger, F. Gomes, Z. Xiao, P. Gburzynski, T. Ono-Tesfaye, S. Ramaswamy, C. Williamson, and A. Covington.
A high fidelity ATM traffic and network simulator. InProceedings of the Winter Simulation Conference, pages
996–1003, 1995.

50 REFERENCES

51

Appendix A

ANML Files Used in Tutorials

In this appendix the ANML files used in the tutorials in Sections 2 and 3 are given in full.

/*===
* File: net_schema.nml
*
* Description: This file contains a basic schema definition for network models.
*===
*/

_schema [
_name NetSchema

_components [
/* Allow only a single Network instance at top-level

*/
Network [_occurs [_num_occur 1]]

] // end _schema _components

_classes [

/*---
* Class: Network
*
* Description: This is a class used to represent a network. A network
* may be further composed of other networks and can contain
* different network components.
*
* Instantiable: yes
*---
*/

Network[
_isa Component
_components[

/* A Network may contain subnets */
Network []

/* A Network may contain different nodes */
Node []

52 APPENDIX A. ANML FILES USED IN TUTORIALS

/* A Network may contain links to connect the nodes together */
Link []

] // end Network _components

] // end Network

/*---
* Class: Node
*
* Description: This is a class to represent the different nodes that can
* exist on network such as routers and hosts.
*
* Instantiable: no
*---
*/

Node[
_isa Component
_may_instantiate false

] // end Node

/*---
* Class: Link
*
* Description: This class is a base class for the different links
* that connect nodes on a network together.
*
* Instantiable: no
*---
*/

Link[
_isa Component
_may_instantiate false

_attributes[

/*..
* Attribute: delay
*
* Type: real
*
* Description: - the propagation delay on the link in seconds.
*
* Use: Required
*
* Constraints: - 0.0 < prop_delay
*..
*/

delay [
_atr_type real
_constraints [_min_exclusive 0.0]

53

]

/*..
* Attribute: rate
*
* Type: real
*
* Description: - the rate of the link in Mbps
*
* Use: Required
*
* Constraints: - 0 < rate
*..
*/

rate [
_atr_type real
_constraints [_min_exclusive 0]

]

/*..
* Attribute: mtu
*
* Type: integer
*
* Description: - the maximum transmission unit for the link
* (i.e. the largest size of a packet in bytes that
* can be transmitted across the link)
*
* Use: Required
*
* Constraints: - 68 <= mtu <= 65535
*..
*/

mtu [
_atr_type integer
_constraints [_min_inclusive 68 _max_inclusive 65535]

]

] // end Link _attributes

] // end Link

/*---
* Class: Router
*
* Description: This is a class to represent a router. A router is a node
* on a network that determines which neighboring node a
* packet should be sent to on its way to its destination.
*
* Instantiable: yes
*---
*/

Router[

54 APPENDIX A. ANML FILES USED IN TUTORIALS

_isa Node

_attributes [

/*..
* Attribute: proc_delay
*
* Type: real
*
* Description: - the time it takes to process a packet in the router in
* seconds.
*
* Use: Default - default of 0.000001 seconds given in _default section
* - default is overridden if user defines attribute
*
* Constraints: - 0 < proc_delay
*..
*/

proc_delay [
_atr_type real
_constraints [_min_exclusive 0]

]

/*..
* Attribute: buffer_size
*
* Type: integer
*
* Description: - size of buffer on each router interface in Bytes.
*
* Use: Default - default of 50 kB given in _default section
* - default is overridden if user defines attribute
*
* Constraints: - 0 < buffer_size
*..
*/

buffer_size [
_atr_type integer
_constraints [_min_exclusive 0]

]

/*..
* Attribute: lan_links
*
* Type: id_type
*
* Description: - a router may be on zero or more LANs. This attribute
* is specified to indicate the LAN_Links that the
* router is attached to.
*
* Use: Optional
*
* Constraints: - id must refer to a component of the LAN_Link class

55

*..
*/

lan_links [
_atr_type id_type
_is_optional true
_constraints [_valid_classes {LAN_Link}]

]

] // end Router _attributes

_default[

proc_delay 0.000001
buffer_size 51200 // 51200 Bytes = 50 kB

] // end Router _default

] // end Router

/*---
* Class: Host
*
* Description: This is a class representing a host. In this model hosts
* are considered to be end nodes on a network, not
* responsible for routing, that are generate or
* receive traffic of some sort.
*
* Instantiable: yes
*---
*/

Host[
_isa Node

_attributes[

/*..
* Attribute: buffer_size
*
* Type: integer
*
* Description: - size of buffer on host interface in Bytes.
*
* Use: Default - default of 50 kB given in _default section
* - default is overridden if user defines attribute
*
* Constraints: - 0 < buffer_size
*..
*/

buffer_size [
_atr_type integer
_constraints [_min_exclusive 0]

]

56 APPENDIX A. ANML FILES USED IN TUTORIALS

/*..
* Attribute: lan_link
*
* Type: id_type
*
* Description: - As a host is considered to be an end node for this
* network model, and may not route packets, it may
* be connected to at most one LAN. (A Host could be
* on a point-to-point network.)
*
* Use: Optional
*
* Constraints: - id must refer to a component of the LAN_Link class
*..
*/

lan_link [
_atr_type id_type
_is_optional true
_constraints [_valid_classes {LAN_Link} _max_ids 1]

]

] // end BasicHost _attributes

_default[

buffer_size 51200 // 51200 Bytes = 50 kB

] // end BasicHost _default

] // end BasicHost

/*---
* Class: P2P_Link
*
* Description: This is a class representing a point-to-point link between
* two nodes.
*
* Instantiable: yes
*---
*/

P2P_Link[
_isa Link

_attributes[

/*..
* Attribute: nodeA
*
* Type: id_type
*
* Description: - the node on one end of the link
*

57

* Use: Required
*
* Constraints: - id must refer to component which is a member of
* Node class
* - only one id may be given
*..
*/

nodeA [
_atr_type id_type
_constraints [_valid_classes {Node} _num_ids 1]

]

/*..
* Attribute: nodeB
*
* Type: id_type
*
* Description: - the node on the other end of the link
*
* Use: Required
*
* Constraints: - id must refer to component which is a member of
* Node class
* - only one id may be given
*..
*/

nodeB [
_atr_type id_type
_constraints [_valid_classes {Node} _num_ids 1]

]

] // end P2P_Link _attributes

_default[
mtu 9180 /* have a default mtu of 9180 bytes */

]

] // end P2P_Link

/*---
* Class: LAN_Link
*
* Description: Represents a link to join nodes on a LAN together.
*
* Instantiable: yes
*---
*/

LAN_Link[
_isa Link

_default[
mtu 1500 /* have a default mtu of 1500 bytes - Ethernet Standard */

]

58 APPENDIX A. ANML FILES USED IN TUTORIALS

] // end LAN_Link

] // end _schema _classes

] // end _schema

59

/*===
* File: net_databases.nml
*
* Description: This file contains different databases used to define
* different components for use in network models.
*===
*/

/*---
* Database: Node_DB
*
* Description: Contains definitions of different network nodes.
*---
*/

_database [
_name Node_DB

StdHost[_class Host buffer_size 102400]

StdRouter[_class Router proc_delay 0.000005 buffer_size 102400]

] // end _database Node_DB

/*---
* Database: Link_DB
*
* Description: Contains definitions of different links.
*---
*/

_database [
_name Link_DB

/* 10Mbps LAN_Link (representative of 10Mbps Ethernet) */
LAN_10Mbps[_class LAN_Link rate 10]

/* an OC-3 point-to-point link - 155.52 Mbps */
Link_OC3[_class P2P_Link rate 155.52]

] // end _database Link_DB

/*---
* Database: Network_DB
*
* Description: Contains definitions of various networks.
*---
*/

_database [
_name Network_DB

/* A LAN with two hosts */
Net2H[

_class Network
LAN_10Mbps[_id L1 _in_database Link_DB delay 0.00001]

60 APPENDIX A. ANML FILES USED IN TUTORIALS

StdHost[_id {H1,H2} _in_database Node_DB lan_link .L1]
]

/* A LAN with three hosts */
Net3H[

_class Network
LAN_10Mbps[_id L1 _in_database Link_DB delay 0.00001]
StdHost[_id [_from H1 _to H3] _in_database Node_DB lan_link .L1]

]

/* A network with two subnets, both having two hosts each. A router
* joins the two subnets.
*/

Net2S_A[
_class Network
Net2H[_id {N1,N2} _in_database Network_DB]
StdRouter[_id R1 _in_database Node_DB lan_links{.N1.L1, .N2.L1}]

]

/* A network with two subnets, one with two hosts, and one with three hosts.
* A router joins the two subnets.
*/

Net2S_B[
_class Network
Net2H[_id N1 _in_database Network_DB]
Net3H[_id N2 _in_database Network_DB]
StdRouter[_id R1 _in_database Node_DB lan_links{.N1.L1, .N2.L1}]

]

] // end _database Network_DB

61

/*===
* File: tut1_model.anml
*
* Description: This file describes a network model that consists of three
* main networks. The three main networks are composed of
* further subnets and are joined by point-to-point links.
*===
*/

_include net_schema.anml
_include net_databases.anml

_model[
_name tut1_model
_use_schema NetSchema

Network[
_id Netmodel

/* The model is comprised of three main networks */
Net2S_B[_id {N1,N3} _in_database Network_DB]
Net2S_A[_id N2 _in_database Network_DB]

/* The links to join the three networks together */
Link_OC3[_id L1 _in_database Link_DB

delay 0.0001 nodeA .N1.R1 nodeB .N3.R1]
Link_OC3[_id L2 _in_database Link_DB

delay 0.0002 nodeA .N1.R1 nodeB .N2.R1]
Link_OC3[_id L3 _in_database Link_DB

delay 0.00015 nodeA .N2.R1 nodeB .N3.R1]

]

]

