
ANML Processor Manual

Cameron Kiddle

TeleSim Group
Department of Computer Science

University of Calgary

December 19, 2002

Contents

Contents iii

1 Introduction 1

2 Using the ANML Processor 3
2.1 Building the ANML Processor . 3
2.2 Using the ANML Processor as a Stand-Alone Tool 3
2.3 Using the ANML Processor as a Library . 4

3 ANML Processor Library Interface 5
3.1 Class anml manager (anml c manager) . 5
3.2 Creating, Copying and Deleting ANML Managers 7
3.3 Processing ANML Models . 8
3.4 Writing ANML Models . 8
3.5 Traversing Components . 9
3.6 Traversing Attributes of Current Component . 12
3.7 Traversing Values of Current Attribute . 14
3.8 Accessing Manager Information . 15
3.9 Accessing Current Model Information . 16
3.10 Accessing Current Component Information . 16
3.11 Accessing Current Attribute Information . 17
3.12 Accessing Current Attribute Value Information . 19
3.13 Setting Manager Functionality . 20

4 Example Program 21

A ANML Processor Library Interface Quick Reference 25

B Code for Example Program 31

1

Chapter 1

Introduction

ANML, which stands for ANother Modelling Language, is a general purpose modelling language
that can be used to describe various systems such as communication networks. A particular de-
scription of such a system is referred to as a model. Rules for creating models are specified in a
structure called a schema. The ANML Processor is a tool used to process ANML models to deter-
mine if they are well-formed and valid. Models are well-formed if they match the ANML syntax
and models are valid if they satisfy the rules specified in the schema. Definition of the ANML
syntax and directions for creating schemas and models can be found in The ANML Guide. This
document describes how to use the ANML Processor.

The ANML Processor can be used either as a stand-alone tool or as a C/C++ library. As
a stand-alone tool, the ANML processor can be used to process models to determine if they are
well-formed and valid. As a library, the ANML processor can be used by different applications
to both process models and extract the model information. Examples of such applications might
include simulators that use ANML models to describe simulation scenarios, or visualization tools
used to display ANML models.

This manual continues by explaining how to use the ANML Processor as a stand-alone tool and
as a library. The library interface is then described in detail, followed by an example application
program that utilizes the ANML Processor. A quick reference guide to the library interface and
the code for the example application program can be found in the Appendix.

2 CHAPTER 1. INTRODUCTION

3

Chapter 2

Using the ANML Processor

This chapter explains how to build the ANML Processor and how to use the ANML Processor as
a stand-alone tool and as a library.

2.1 Building the ANML Processor

The ANML Processor can be built from the top level directory of the source code package. After
entering the top level directory, enter the following at the command line prompt (denoted as ‘>’):

> ./configure
> gmake
> gmake install

Note that the GNU make utility gmake should be used as other versions of make may not be
compatible. By default, the executable for the stand-alone processor, called anml proc, will be
installed in the bin directory of the top level directory of ANML Processor source code package.
The library for the processor called libchecker.a will be installed in the lib directory of the top
level directory. Enter ./configure --help at the command prompt to learn how the paths for
the bin and lib directories can be set differently.

2.2 Using the ANML Processor as a Stand-Alone Tool

The stand-alone ANML Processor just processes models to determine if they are well-formed and
valid. It can be run on a model file by entering the following at the command line prompt:

> anml_proc -model <modelfile>

For example, if the name of the file containing the model is test.anml then the following should
be entered at the command line prompt:

> anml_proc -model test.anml

If the model contained in test.anml is well-formed and valid then the following should be output
by the ANML Processor:

4 CHAPTER 2. USING THE ANML PROCESSOR

Checking if model is well-formed ...
Model is well-formed.

Checking if model is valid ...
Model is valid.

If the model is not well-formed or valid, messages will be displayed indicating the nature and
location of the errors.

To see additional command line arguments available enter the following at the command line
prompt:

> anml_proc --help

The above command should produce the following output:

ANML Processor command line arguments:
-model <ANML file> file containing model to check
[-disable_warnings] disables warning messages
[-well_formed_only] checks only if model is well-formed

The -model argument must be given, but the -disable warnings and -well formed only
arguments are optional.

2.3 Using the ANML Processor as a Library

There is a both a C and C++ interface to the ANML Processor library. The C++ interface is
essentially a wrapper of the C interface. If using the C interface the application should include
the file anml c manager.h and if using the C++ interface the application should include the file
anml manager.h. The interface is described in detail in Chapter 3.

5

Chapter 3

ANML Processor Library Interface

The interface to the ANML Processor consists of a manager that allows traversal and access of
model information. The manager is written in C (anml c manager) with a C++ wrapper class
(anml manager) also written for convenience. If using the C interface the application should in-
clude the file anml c manager.h. If using the C++ interface the application should include the file
anml manager.h. The C++ anml manager class is described in the next subsection. The member
functions used to traverse and access model information are then described in the remaining sub-
sections. The corresponding C interface functions are given below the C++ member functions in
italics. The only difference is that the C manager must be passed as an argument of the C interface
functions.

3.1 Class anml manager (anml c manager)

To process, traverse and access model information an instance of the anml manager class must be
created when using the C++ interface. When using the C interface an instance of the anml c manager
struct must be created. The anml manager class specification is given below:

class anml_manager {

public:
anml_manager();
anml_manager(anml_c_manager *);
anml_manager(anml_manager *);
~anml_manager();

/* functions for processing models */
int process_model_file(const char *);

/* functions for writing out models */
int write_cur_model(FILE *);

/* functions to traverse components */
int cur_comp();
int next_comp();
int prev_comp();

6 CHAPTER 3. ANML PROCESSOR LIBRARY INTERFACE

int first_sub_comp();
int last_sub_comp();
int parent_comp();
int reset_first_comp(int);
int reset_last_comp(int);
int lev_reset_first_comp();
int lev_reset_last_comp();
int comp_find_forward(const char *);
int comp_find_backward(const char *);
int lookup_comp(const char *);

/* functions to traverse attributes of cur comp */
int cur_atr();
int next_atr();
int prev_atr();
int first_sub_atr();
int last_sub_atr();
int parent_atr();
int reset_first_atr();
int reset_last_atr();
int lev_reset_first_atr();
int lev_reset_last_atr();
int atr_find_forward(const char *);
int atr_find_backward(const char *);

/* functions to traverse values of cur atr */
int cur_atr_val();
int next_atr_val();
int prev_atr_val();
int reset_first_atr_val();
int reset_last_atr_val();

/* functions for accessing manager information */
anml_c_manager * c_manager();

/* functions to access cur model information */
int cur_model__name(char **);
int cur_model__schema_name(char **);

/* functions to access cur comp information */
int cur_comp__id(char **);
int cur_comp__abs_id(char **);
int cur_comp__name(char **);
int cur_comp__class(char **);
int cur_comp__app_class(char **);
int cur_comp_isa(const char *, int *);

3.2. CREATING, COPYING AND DELETING ANML MANAGERS 7

/* functions for accessing cur atr information */
int cur_atr__name(char **);
int cur_atr__composite_name(char **);
int cur_atr__type(sch_atr_type *);
int cur_atr__mod_atr_type(mod_attribute_type *);
int conv_cur_atr_to_id_list();

/* functions for accessing cur atr val information */
int cur_atr_val__string(char **);
int cur_atr_val__integer(int *);
int cur_atr_val__real(double *);
int cur_atr_val__boolean(int *);
int cur_atr_val__abs_id(char **);

/* functions for setting anml_manager functionality */
void set_print_disabled(int);
void set_warnings_disabled(int);

private:
anml_c_manager * _manager;

};

The anml manager class contains a pointer to the anml c manager object used by the C inter-
face. All of the member functions call the corresponding C interface functions using the C manager.
Most member functions return an int to indicate if the call was successful or not. If no errors were
encountered and the call is successful ANML MANAGER SUCCESS is returned. If errors were encoun-
tered or the call was not successful ANML MANAGER FAILURE is returned. The member functions are
described in the subsections to follow.

3.2 Creating, Copying and Deleting ANML Managers

This subsection describes the functions for creating, copying and deleting ANML managers.

anml manager::anml manager()
anml c manager * init anml c manager(void)

This function creates a new anml manager which can be used to process a new model file and
then to traverse and access the model information.

anml manager::anml manager(anml c manager * manager)

This function creates a copy of the C anml c manager passed in as an argument and wraps it
in a C++ anml manager. Only the iterators and other information pertaining to the manager are
copied. Copies of a manager should only be made after the model file has been processed. Other-
wise, all manager copies may not have access to the model data.

8 CHAPTER 3. ANML PROCESSOR LIBRARY INTERFACE

anml manager::anml manager(anml manager * manager)
anml c manager * copy anml c manager(const anml c manager * manager)

This function creates a copy of the anml manager. Note that the model data is not copied. Only
the iterators and other information pertaining to the manager are copied. Copies of a manager
should only be made after the model file has been processed. Otherwise, all manager copies may
not have access to the model data.

anml manager::˜anml manager()
void delete anml c manager(anml c manager * manager)

This function deletes the anml manager. Reference counts to copies of managers are kept to
ensure that model data is not deleted until all copies have been deleted.

3.3 Processing ANML Models

This subsection describes the function used to process ANML models.

int anml manager::process model file(const char * filename)
int am process model file(anml c manager * manager, const char * filename)

This function processes the model in the file with the specified filename. If the model is well formed
and valid the current model of the manager is set to the processed model and ANML MANAGER SUCCESS
is returned. Otherwise, ANML MANAGER FAILURE is returned. The manager has been designed so
that a single manager instance may process and manage multiple models. Currently, only one
model is supported so a new anml manager should be created for each model to be processed.

3.4 Writing ANML Models

This subsection describes the functions used to write ANML models out to a file.

int anml manager::write cur model(FILE * out)
int am write cur model(FILE * out, anml c manager * manager)

This function writes the current model to the out file passed in as an argument. The model
is written out in full without the use of databases. The include key-value pair for the schema
will need to be added manually afterwards. If the current model is NULL ANML MANAGER FAILURE
is returned. Otherwise, ANML MANAGER SUCCESS is returned.

3.5. TRAVERSING COMPONENTS 9

3.5 Traversing Components

This subsection describes the functions used to traverse components of the current model. Be-
fore traversing components, reset first comp or reset last comp must be called with the de-
sired traversal method to setup the components for traversal. Failing to call one of these func-
tions first will result in an ANML PROCESSOR FATAL ERROR which causes the program to be ex-
ited. The components can be traversed using one of three methods: ANML MANAGER PREORDER,
ANML MANAGER POSTORDER or ANML MANAGER FREEORDER. In the ANML MANAGER PREORDER method,
components are traversed in pre-order, which is the component first and then the sub-components
from left to right. In the ANML MANAGER POSTORDER method, components are traversed in post-
order, which is the sub-components first from left to right and then the component. In the
ANML MANAGER FREEORDER method, the user is in control of the order in which the components
are traversed.

int anml manager::cur comp()
int am cur comp(anml c manager * manager)

This function returns ANML MANAGER SUCCESS if the current component of the current model is
not NULL. Otherwise, ANML MANAGER FAILURE is returned.

int anml manager::next comp()
int am next comp(anml c manager * manager)

This function moves to the next component of the current model, according to the traversal method
currently selected, and returns ANML MANAGER SUCCESS if the next component is not NULL. Other-
wise, ANML MANAGER FAILURE is returned. For the ANML MANAGER FREEORDER traversal method, the
next component is the next sub-component of the current component’s parent.

int anml manager::prev comp()
int am prev comp(anml c manager * manager)

This function moves to the previous component of the current model, according to the traver-
sal method currently selected, and returns ANML MANAGER SUCCESS if the previous component is not
NULL. Otherwise, ANML MANAGER FAILURE is returned. For the ANML MANAGER FREEORDER traversal
method, the previous component is the previous sub-component of the current component’s parent.

int anml manager::first sub comp()
int am first sub comp(anml c manager * manager)

This function moves to the first sub-component of the current component. ANML MANAGER SUCCESS
is returned if the first sub-component is not NULL. Otherwise, ANML MANAGER FAILURE is returned.
This function may only be called if using the ANML MANAGER FREEORDER traversal method.

int anml manager::last sub comp()
int am last sub comp(anml c manager * manager)

This function moves to the last sub-component of the current component. ANML MANAGER SUCCESS

10 CHAPTER 3. ANML PROCESSOR LIBRARY INTERFACE

is returned if the last sub-component is not NULL. Otherwise, ANML MANAGER FAILURE is returned.
This function may only be called if using the ANML MANAGER FREEORDER traversal method.

3.5. TRAVERSING COMPONENTS 11

int anml manager::parent comp()
int am parent comp(anml c manager * manager)

This function moves to the parent component of the current component. ANML MANAGER SUCCESS
is returned if the parent component is not NULL. Otherwise, ANML MANAGER FAILURE is returned.
This function may only be called if using the ANML MANAGER FREEORDER traversal method.

int anml manager::reset first comp(int comp traversal type)
int am reset first comp(anml c manager * manager, int comp traversal type)

This function resets the current component to the first component of the current model ac-
cording to the specified comp traversal method. ANML MANAGER SUCCESS is returned if the first
component is not NULL. Otherwise, ANML MANAGER FAILURE is returned. Their are three dif-
ferent traversal methods to choose from: ANML MANAGER PREORDER, ANML MANAGER POSTORDER or
ANML MANAGER FREEORDER. These traversal methods are described at the beginning of Section 3.5.
For the ANML MANAGER PREORDER and ANML MANAGER FREEORDER traversal methods, the first com-
ponent is the first top level component of the model tree. For the ANML MANAGER POSTORDER traver-
sal method the, first component is the left most bottom component in the model tree. Either
reset first comp or reset last comp must be called before traversing the components.

int anml manager::reset last comp(int comp traversal type)
int am reset last comp(anml c manager * manager, int comp traversal type)

This function resets the current component to the very last component of the current model ac-
cording to the specified comp traversal method. ANML MANAGER SUCCESS is returned if the last
component is not NULL. Otherwise, ANML MANAGER FAILURE is returned. Their are three dif-
ferent traversal methods to choose from: ANML MANAGER PREORDER, ANML MANAGER POSTORDER or
ANML MANAGER FREEORDER. These traversal methods are described at the beginning of Section 3.5.
For the ANML MANAGER PREORDER traversal method, the last component is the right most bottom
component in the model tree. For the ANML MANAGER POSTORDER and ANML MANAGER FREEORDER
traversal methods, the last component is the last top level component of the model tree. Either
reset first comp or reset last comp must be called before traversing the components.

int anml manager::lev reset first comp()
int am lev reset first comp(anml c manager * manager)

This function resets the current component to the first sub-component of the current component’s
parent. ANML MANAGER SUCCESS is returned if the first sub-component of the current component’s
parent is not NULL. Otherwise, ANML MANAGER FAILURE is returned. This function may only be
called if using the ANML MANAGER FREEORDER traversal method.

int anml manager::lev reset last comp()
int am lev reset last comp(anml c manager * manager)

This function resets the current component to the last sub-component of the current component’s
parent. ANML MANAGER SUCCESS is returned if the last sub-component of the current component’s
parent is not NULL. Otherwise, ANML MANAGER FAILURE is returned. This function may only be

12 CHAPTER 3. ANML PROCESSOR LIBRARY INTERFACE

called if using the ANML MANAGER FREEORDER traversal method.

int anml manager::comp find forward(const char * class name)
int am comp find forward(anml c manager * manager, const char * class name)

Starting with the current component, and traversing forward according to the traversal method
currently selected, this function finds the first component that is an instance of the class specified
by the class name argument. If a component is found ANML MANAGER SUCCESS is returned. Other-
wise, ANML MANAGER FAILURE is returned.

int anml manager::comp find backward(const char * class name)
int am comp find backward(anml c manager * manager, const char * class name)

Starting with the current component, and traversing backward according to the traversal method
currently selected, this function finds the first component that is an instance of the class specified
by the class name argument. If a component is found ANML MANAGER SUCCESS is returned. Other-
wise, ANML MANAGER FAILURE is returned.

int anml manager::lookup comp(const char * abs id)
int am lookup comp(anml c manager * manager, const char * abs id)

This function sets the current component to be the component of the current model with the abso-
lute identifier specified by the abs id argument. If a component with the specified absolute identifier
is found, ANML MANAGER SUCCESS is returned. Otherwise, ANML MANAGER FAILURE is returned. The
absolute identifier of a component is its complete hierarchical identifier starting from the top level
of the model. This function sets the current traversal method to be ANML MANAGER FREEORDER and
does not require reset first comp or reset last comp to be called first.

3.6 Traversing Attributes of Current Component

This subsection describes the functions used to traverse attributes of the current component. Before
traversing attributes, reset first atr or reset last atr must be called to setup the attributes
for traversal. Failing to call one of these functions first will result in an ANML PROCESSOR FATAL
ERROR which causes the program to be exited.

int anml manager::cur atr()
int am cur atr(anml c manager * manager)

This function returns ANML MANAGER SUCCESS if the current attribute of the current component
is not NULL. Otherwise, ANML MANAGER FAILURE is returned.

int anml manager::next atr()
int am next atr(anml c manager * manager)

This function moves to the next attribute of the current component. ANML MANAGER SUCCESS is
returned if the next attribute is not NULL. Otherwise, ANML MANAGER FAILURE is returned.

3.6. TRAVERSING ATTRIBUTES OF CURRENT COMPONENT 13

int anml manager::prev atr()
int am prev atr(anml c manager * manager)

This function moves to the previous attribute of the current component. ANML MANAGER SUCCESS
is returned if the previous attribute is not NULL. Otherwise, ANML MANAGER FAILURE is returned.

int anml manager::first sub atr()
int am first sub atr(anml c manager * manager)

This function moves to the first sub-attribute of the current attribute. ANML MANAGER SUCCESS
is returned if the first sub-attribute is not NULL. Otherwise, ANML MANAGER FAILURE is returned.
This function may only be called if current attribute is a composite attribute. Composite attributes
have a mod atr type of MOD COMP ATR.

int anml manager::last sub atr()
int am last sub atr(anml c manager * manager)

This function moves to the last sub-attribute of the current attribute. ANML MANAGER SUCCESS
is returned if the last sub-attribute is not NULL. Otherwise, ANML MANAGER FAILURE is returned.
This function may only be called if current attribute is a composite attribute. Composite attributes
have a mod atr type of MOD COMP ATR.

int anml manager::parent atr()
int am parent atr(anml c manager * manager)

This function moves to the parent attribute of the current attribute. ANML MANAGER SUCCESS is
returned if the parent attribute is not NULL. Otherwise, ANML MANAGER FAILURE is returned.

int anml manager::reset first atr()
int am reset first atr(anml c manager * manager)

This function resets the current attribute to the first attribute of the current component. If the first
attribute is not NULL, ANML MANAGER SUCCESS is returned. Otherwise, ANML MANAGER FAILURE is
returned. Either reset first atr or reset last atr must be called before traversing the at-
tributes of the current component.

int anml manager::reset last atr()
int am reset last atr(anml c manager * manager)

This function resets the current attribute to the last attribute of the current component. If the
last attribute is not NULL, ANML MANAGER SUCCESS is returned. Otherwise, ANML MANAGER FAILURE
is returned. Either reset first atr or reset last atr must be called before traversing the at-
tributes of the current component.

14 CHAPTER 3. ANML PROCESSOR LIBRARY INTERFACE

int anml manager::lev reset first atr()
int am lev reset first atr(anml c manager * manager)

This function resets the current attribute to the first sub-attribute of the current attribute’s parent.
If the first sub-attribute of the current attribute’s parent is not NULL, ANML MANAGER SUCCESS is
returned. Otherwise, ANML MANAGER FAILURE is returned. This function is intended for use with
composite attributes.

int anml manager::lev reset last atr()
int am lev reset last atr(anml c manager * manager)

This function resets the current attribute to the last sub-attribute of the current attribute’s parent.
If the last sub-attribute of the current attribute’s parent is not NULL, ANML MANAGER SUCCESS is
returned. Otherwise, ANML MANAGER FAILURE is returned. This function is intended for use with
composite attributes.

int anml manager::atr find forward(const char * atr name)
int am atr find forward(anml c manager * manager, const char * atr name)

Starting with the current attribute, and traversing forward on the same attribute level, this function
finds the attribute with the name specified by the atr name argument. If the attribute is found,
ANML MANAGER SUCCESS is returned. Otherwise, ANML MANAGER FAILURE is returned.

int anml manager::atr find backward(const char * atr name)
int am atr find backward(anml c manager * manager, const char * atr name)

Starting with the current attribute, and traversing backward on the same attribute level, this
function finds the attribute with the name specified by the atr name argument. If the attribute is
found, ANML MANAGER SUCCESS is returned. Otherwise, ANML MANAGER FAILURE is returned.

3.7 Traversing Values of Current Attribute

This subsection describes the functions used to traverse attribute values of the current attribute.
With the exception of cur atr val, these functions may only be called on attributes with a list of
values. These attributes have a MOD ATR TYPE of MOD VAL LIST ATR. Before traversing attribute val-
ues, reset first atr or reset last atr must be called to setup the attribute values for traversal.
Failing to call one of these functions first, will result in an ANML PROCESSOR FATAL ERROR which
causes the program to be exited.

int anml manager::cur atr val()
int am cur atr val(anml c manager * manager)

This function returns ANML MANAGER SUCCESS if the current attribute value of the current attribute
is not NULL. Otherwise, ANML MANAGER FAILURE is returned.

3.8. ACCESSING MANAGER INFORMATION 15

int anml manager::next atr val()
int am next atr val(anml c manager * manager)

This function moves to the next attribute value of the current attribute. ANML MANAGER SUCCESS is
returned if the next attribute value is not NULL. Otherwise, ANML MANAGER FAILURE is returned.
This function may only be called if the current attribute has a list of values. The MOD ATR TYPE of
such an attribute is MOD VAL LIST ATR.

int anml manager::prev atr val()
int am prev atr val(anml c manager * manager)

This function moves to the previous attribute value of the current attribute. ANML MANAGER SUCCESS
is returned if the previous attribute value is not NULL. Otherwise, ANML MANAGER FAILURE is
returned. This function may only be called if the current attribute has a list of values. The
MOD ATR TYPE of such an attribute is MOD VAL LIST ATR.

int anml manager::reset first atr val()
int am reset first atr val(anml c manager * manager)

This function resets the current attribute value to the first attribute value of the current at-
tribute. If the first attribute value is not NULL, ANML MANAGER SUCCESS is returned. Other-
wise, ANML MANAGER FAILURE is returned. This function may only be called if the current at-
tribute has a list of values. The MOD ATR TYPE of such an attribute is MOD VAL LIST ATR. Either
reset first atr val or reset last atr val must be called before traversing the attribute values
of the current attribute.

int anml manager::reset last atr val()
int am reset last atr val(anml c manager * manager)

This function resets the current attribute value to the last attribute value of the current at-
tribute. If the last attribute value is not NULL, ANML MANAGER SUCCESS is returned. Other-
wise, ANML MANAGER FAILURE is returned. This function may only be called if the current at-
tribute has a list of values. The MOD ATR TYPE of such an attribute is MOD VAL LIST ATR. Either
reset first atr val or reset last atr val must be called before traversing the attribute values
of the current attribute.

3.8 Accessing Manager Information

This subsection describes the functions that access data members of an anml manager.

anml c manager * c manager()

This function returns the C manager that this C++ manager is a wrapper for.

16 CHAPTER 3. ANML PROCESSOR LIBRARY INTERFACE

3.9 Accessing Current Model Information

This subsection describes the functions that access information pertaining to the current model.
Note that the requested information is returned using an argument and that the return values for the
functions are ANML MANAGER SUCCESS, if the current model is not NULL and ANML MANAGER FAILURE
otherwise.

int anml manager::cur model name(char ** model name)
int get am cur model name(anml c manager * manager, char ** model name)

This function returns ANML MANAGER SUCCESS and sets *model name to the (char *) pointer of the
name of the current model, if the current model is not NULL. Otherwise, ANML MANAGER FAILURE
is returned and *model name is set to NULL.

int anml manager::cur model schema name(char ** schema name)
int get am cur model schema name(anml c manager * manager, char ** schema name)

This function returns ANML MANAGER SUCCESS and sets *schema name to the (char *) pointer of
the name of the schema used by the current model, if the current model is not NULL. Otherwise,
ANML MANAGER FAILURE is returned and *schema name is set to NULL.

3.10 Accessing Current Component Information

This subsection describes the functions that access information pertaining to the current compo-
nent. Either reset first comp or reset last comp must be called before calling functions to
access current component information. Failure to do so will result in an ANML PROCESSOR FATAL
ERROR which causes the program to be exited. Note that the requested information is returned
using an argument and that the return values for the functions are ANML MANAGER SUCCESS, if the
current component is not NULL and ANML MANAGER FAILURE otherwise.

int anml manager::cur comp id(char ** id)
int get am cur comp id(anml c manager * manager, char ** id)

This function returns ANML MANAGER SUCCESS and sets *id to the (char *) pointer of the level id of
the current component, if the current component is not NULL. Otherwise, ANML MANAGER FAILURE
is returned and *id is set to NULL.

int anml manager::cur comp abs id(char ** abs id)
int get am cur comp abs id(anml c manager * manager, char ** abs id)

This function returns ANML MANAGER SUCCESS and sets *abs id to a (char *) pointer of the ab-
solute identifier of the current component, if the current component is not NULL. Otherwise,
ANML MANAGER FAILURE is returned and *abs id is set to NULL. The absolute identifier of a com-
ponent is its hierarchical identifier beginning at the top level of the model. The memory pointed
to by *abs id will be overwritten the next time this function or cur atr val abs id is called, so
the returned result should be copied or used before either of these functions are called again.

3.11. ACCESSING CURRENT ATTRIBUTE INFORMATION 17

int anml manager::cur comp name(char ** name)
int get am cur comp name(anml c manager * manager, char ** name)

This function returns ANML MANAGER SUCCESS and sets *name to the (char *) pointer of the name of
the current component, if the current component is not NULL. Otherwise, ANML MANAGER FAILURE
is returned and *name is set to NULL. The name of the component is the name of the class the
component belongs to if directly instantiated or the name of the database component that was used
to instantiate the component.

int anml manager::cur comp class(char ** class name)
int get am cur comp class(anml c manager * manager, char ** class name)

This function returns ANML MANAGER SUCCESS and sets *class name to the (char *) pointer of
the class name of the current component, if the current component is not NULL. Otherwise,
ANML MANAGER FAILURE is returned and *class name is set to NULL.

int anml manager::cur comp app class(char ** app class name)
int get am cur comp app class(anml c manager * manager, char ** app class name)

This function returns ANML MANAGER SUCCESS and sets *app class name to the (char *) pointer
of the application class name of the current component, if the current component is not NULL.
Otherwise, ANML MANAGER FAILURE is returned and *app class name is set to NULL. Note, if the
application class name was not set in the schema then *app class name will be NULL.

int anml manager::cur comp isa(const char * class name, int * isa)
int am cur comp isa(anml c manager * manager, const char * class name, int * isa)

This function returns ANML MANAGER SUCCESS and sets *isa to 1, if the current component is an
instance of the class specified by the class name argument, or to 0 if not, if the current component
is not NULL. Otherwise, ANML MANAGER FAILURE is returned and *isa is set to 0.

3.11 Accessing Current Attribute Information

This subsection describes the functions that access information pertaining to the current attribute.
Either reset first atr or reset last atr must be called before calling functions to access cur-
rent attribute information. Failure to do so will result in an ANML PROCESSOR FATAL ERROR which
causes the program to be exited. Note that the requested information is returned using an argument
and that the return values for the functions are ANML MANAGER SUCCESS, if the current attribute is
not NULL and ANML MANAGER FAILURE otherwise.

int anml manager::cur atr name(char ** name)
int get am cur atr name(anml c manager * manager, char ** name)

This function returns ANML MANAGER SUCCESS and sets *name to the (char *) pointer of the name
of the current attribute, if the current attribute is not NULL. Otherwise, ANML MANAGER FAILURE

18 CHAPTER 3. ANML PROCESSOR LIBRARY INTERFACE

is returned and *name is set to NULL.

int anml manager::cur atr composite name(char ** composite name)
int get am cur atr composite name(anml c manager * manager, char * composite name)

This function returns ANML MANAGER SUCCESS and sets *composite name to the (char *) pointer
of the composite name of the current attribute, if the current attribute is not NULL. Otherwise,
ANML MANAGER FAILURE is returned and *composite name is set to NULL. The composite name of
an attribute includes the names of its parent attributes, separated by ‘.’s, starting with the highest
level parent. For example if b is a sub-attribute of a, then the composite name of b is ‘a.b’.

int anml manager::cur atr type(sch atr type * type)
int get am cur atr type(anml c manager * manager, sch atr type * type)

This function returns ANML MANAGER SUCCESS and sets *type to the attribute type, if the cur-
rent attribute is not NULL. Otherwise, ANML MANAGER FAILURE is returned and *type is set to
SCH INVALID. The sch atr type values are specified in Table 3.1.

Attribute Type sch atr type Value
integer SCH INTEGER
real SCH REAL
boolean SCH BOOLEAN
string SCH STRING
comp atr SCH COMP ATR
id type SCH ID TYPE
integer list SCH INTEGER LIST
real list SCH REAL LIST
boolean list SCH BOOLEAN LIST
string list SCH STRING LIST

Table 3.1: sch atr type Values

int anml manager::cur atr mod atr type(mod attribute type * mod atr type)
int get am cur atr mod atr type(anml c manager * manager, mod attribute type * mod atr type)

This function returns ANML MANAGER SUCCESS and sets *mod atr type to the mod attribute type,
if the current attribute is not NULL. Otherwise, *mod atr type is set to MOD INVALID ATR and
ANML MANAGER FAILURE is returned. This additional attribute type field is given because an at-
tribute of the id type may have a single value, a list of values or may be composite having a range
of values. The mod attribute type values are specified in Table 3.2.

int anml manager::conv cur atr to id list()
int am conv cur atr to id list(anml c manager * manager)

This function may only be called on attributes of the id type. If the current attribute is not NULL,
ANML MANAGER SUCCESS is returned and the id type attribute is converted to a list of identifiers,

3.12. ACCESSING CURRENT ATTRIBUTE VALUE INFORMATION 19

Attribute Type mod attribute type Value
Single Value MOD VAL ATR
Value List MOD VAL LIST ATR
Composite MOD COMP ATR

Table 3.2: mod attribute type Values

such that the mod attribute type will be MOD VAL LIST ATR. Otherwise, ANML MANAGER FAILURE
is returned. This function is useful in dealing with attributes of the id type so that all three
mod attribute type cases do not have to be dealt with separately.

3.12 Accessing Current Attribute Value Information

This subsection describes the functions that access information pertaining to the current attribute
value. These functions may only be called on attributes with a mod attribute type of MOD VAL ATR
or MOD VAL LIST ATR. Additionally, for attributes with mod attribute type of MOD VAL LIST ATR,
either reset first atr val or reset last atr val must be called before calling functions to ac-
cess current attribute value information. Failure to do so will result in an ANML PROCESSOR FATAL
ERROR which causes the program to be exited. Note that the requested information is returned
using an argument and that the return values for the functions are ANML MANAGER SUCCESS, if the
current attribute value is not NULL and ANML MANAGER FAILURE otherwise.

int anml manager::cur atr val string(char ** string val)
int get am cur atr val string(anml c manager * manager, char ** string val)

This function returns ANML MANAGER SUCCESS and sets *string val to the (char *) pointer of
the string value of the current attribute value, if the current attribute value is not NULL. Other-
wise, ANML MANAGER FAILURE is returned and *string val is set to NULL. The string value can be
returned for attributes of all sch atr types except for SCH COMP ATR.

int anml manager::cur atr val integer(int * int val)
int get am cur atr val integer(anml c manager * manager, int * int val)

This function returns ANML MANAGER SUCCESS and sets *int val to the integer value of the current
attribute value, if the current attribute value is not NULL. Otherwise, ANML MANAGER FAILURE is re-
turned and *int val is set to 0. This function can only be called if the attribute has a sch atr type
of SCH INTEGER or SCH INTEGER LIST.

int anml manager::cur atr val real(double * real val)
int get am cur atr val real(anml c manager * manager, double * real val)

This function returns ANML MANAGER SUCCESS and sets *real val to the real value of the cur-
rent attribute value, if the current attribute value is not NULL. Otherwise, ANML MANAGER FAILURE
is returned and *real val is set to 0. This function can only be called if the attribute has a
sch atr type of SCH REAL or SCH REAL LIST.

20 CHAPTER 3. ANML PROCESSOR LIBRARY INTERFACE

int anml manager::cur atr val boolean(int * bool val)
int get am cur atr val boolean(anml c manager * manager, int * bool val)

This function returns ANML MANAGER SUCCESS and sets *bool val to 1 if true and 0 if false, if the
current attribute value is not NULL. Otherwise, ANML MANAGER FAILURE is returned and *bool val
is set to 0. This function can only be called if the attribute has a sch atr type of SCH BOOLEAN or
SCH BOOLEAN LIST.

int anml manager::cur atr val abs id(char ** abs id)
int get am cur atr val abs id(anml c manager * manager, char ** abs id)

This function returns ANML MANAGER SUCCESS and sets *abs id to a char * pointer of the absolute
identifier value, if the current attribute value is not NULL. Otherwise, ANML MANAGER FAILURE is
returned and *abs id is set to NULL. The absolute identifier of a component is its hierarchical
identifier beginning at the top level of the model. The memory pointed to by *abs id will be
overwritten the next time this function or cur comp abs id is called so the returned result should
be copied or used before either of these functions are called again. This function can only be called
if the attribute has a sch atr type of id type.

3.13 Setting Manager Functionality

These functions allow the setting of various manager functionalities.

void anml manager::set print disabled(int print disabled)
void set am print disabled(anml c manager * manager, int print disabled)

This function allows ANML print statements to be disabled by passing in 1 as an argument, or
enabled by passing in 0 as an argument. By default, ANML print statements are enabled. ANML
print statements are output when a model is processed to indicate the progress of the processor.

void anml manager::set warnings disabled(int warnings disabled)
void set am warnings disabled(anml c manager * manager, int warnings disabled)

This function allows ANML warning messages to be disabled by passing in 1 as an argument,
or enabled by passing in 0 as an argument. By default, ANML warning messages are enabled.
ANML warning messages are output if potential problems with a model are found. Even with
warnings, a model will be well formed and valid as long as no errors are detected.

21

Chapter 4

Example Program

This section describes portions of a simple C++ program (net proc.C) that uses the ANML
Processor. The program uses an anml manager to process, traverse and display information of
ANML models that utilize the NetSchema, a schema that can be used for the description of simple
communication networks. For further information on the NetSchema refer to The ANML Guide
where it is used as an example schema. The full code for the program is given in Appendix B. For
the code given in this section line numbers are included for easy reference purposes.

As the program is utilizing the C++ anml manager the file anml manager.h must be included.

22> #include "anml_manager.h"

The main function for the program is given below:

29> int
30> main(int argc, char * argv[])
31> {
32> anml_manager * manager = NULL;
33> int i = 0;
34> char * model_filename = NULL;
35>
36> /* extract model filename to process from command line arguments */
37> for(i = 0; i < argc; ++i) {
38> if(strcmp(argv[i], "-model") == 0)
39> break;
40> }
41> ++i;
42> if(i < argc) {
43> model_filename = argv[i];
44> }
45> else {
46> fprintf(stderr,"-model <filename> must be specified.\n");
47> exit(1);
48> }
49>
50> /* create the anml_manager and process the model file */
51> manager = new anml_manager();

22 CHAPTER 4. EXAMPLE PROGRAM

52> if((manager->process_model_file(model_filename)) !=
53> ANML_MANAGER_SUCCESS)
54> exit(1);
55>
56> /* traverse and display information on the different model components */
57> traverse_hosts(manager);
58> traverse_routers(manager);
59> traverse_p2p_links(manager);
60> traverse_lan_links(manager);
61>
62> /* clean up */
63> delete manager;
64>
65> exit(0);
66> }

On lines 37 to 48 the name of the file containing the ANML model is extracted from the com-
mand line arguments. A new anml manager is created on line 50. The model file is then processed on
lines 52 to 54. The member function process model file will return ANML MANAGER SUCCESS if the
model was found to be both well-formed and valid. If errors were detected ANML MANAGER FAILURE
will be returned. Functions are then called to traverse different model components on lines 57 to
60. The manager is deleted on line 63.

The functions for traversing and displaying information on components are fairly similar. The
function for traversing components that are instances of the class Host is given below as an example.

68> void
69> traverse_hosts(anml_manager * manager)
70> {/* Traverses and displays information on all components that are instances
71> * of the class Host */
72>
73> char * abs_id = NULL;
74> int buffer_size = 0;
75> char * lan_link_abs_id = NULL;
76>
77>
78> fprintf(stdout, "Here are the Hosts:\n");
79> fprintf(stdout, "-------------------\n\n");
80>
81> manager->reset_first_comp(ANML_MANAGER_PREORDER);
82>
83> while(manager->comp_find_forward("Host") == ANML_MANAGER_SUCCESS) {
84> manager->cur_comp__abs_id(&abs_id);
85> fprintf(stdout, "%s\n", abs_id);
86>
87> manager->reset_first_atr();
88> if(manager->atr_find_forward("buffer_size") != ANML_MANAGER_SUCCESS) {
89> fprintf(stderr, "Failed to find ’buffer_size’ attribute.\n");
90> exit(1);

23

91> }
92> manager->cur_atr_val__integer(&buffer_size);
93> fprintf(stdout, " buffer_size: %d Bytes\n", buffer_size);
94>
95> manager->reset_first_atr();
96> if(manager->atr_find_forward("lan_link") == ANML_MANAGER_SUCCESS) {
97> manager->cur_atr_val__abs_id(&lan_link_abs_id);
98> fprintf(stdout, " lan_link: %s\n", lan_link_abs_id);
99> }
100>
101> fprintf(stdout, "\n");
102> manager->next_comp();
103> }
104> fprintf(stdout, "\n");
105> }

Before traversing components the components must be reset as shown on line 81 using the
member function reset first comp. This resets the current component pointer to the first com-
ponent of a specified traversal order. Components can be traversed in pre-order, post-order or
free-order as described in Section 3.5. In this example the components are set to be traversed in
pre-order. The while loop on lines 83 to 103 traverses all of the components that are instances
of the class Host. The member function comp find forward (line 83) finds the first component
in the forward traversal direction, starting with the current component, that is an instance of the
specified class. If a component of the specified class is found, ANML MANAGER SUCCESS is returned.
Otherwise, ANML MANAGER FAILURE is returned. On line 102 the next component is traversed to
using the member function next comp.

The absolute identifier of the Host is extracted using the member function cur comp abs id
on line 84. An absolute identifier is the full hierarchical identifier beginning at the top level of the
model. The returned identifier should be used immediately or copied as the same memory location
will be overwritten the next time a call to access an absolute identifier is made. The attributes
of the host are then traversed on lines 87 to 99. As was the case for component traversal, the
attributes must be reset before traversing attributes of the current component. On line 87 that
current attribute pointer is reset to the first attribute of the current Host using the member function
reset first atr. The member function atr find forward on line 88 searches the attributes of
the current Host in the forward direction, starting with the current attribute, for the attribute with
the name buffer size. If the attribute is found, ANML MANAGER SUCCESS is returned. Otherwise,
ANML MANAGER FAILURE is returned. The integer value of the buffer size attribute, which is of the
integer type, is retrieved on line 92 using the member function cur atr val integer. On line
95 the attributes are reset to the first attribute and on line 96 a search is made for the lan link
attribute. Since this attribute is specified as an optional attribute in the NetSchema, the program
is not exited if it is not found. The lan link attribute is of the id type and the absolute format of
the identifier is retrieved on line 97 using the member function cur atr val abs id. The returned
identifier should be used immediately or copied as the same memory location will be overwritten
the next time a call to access an absolute identifier is made.

Instead of searching for each individual attribute separately, the attributes of the Host could be
traversed just once via the member function next atr. Actions could be performed based on the
name of the attribute currently being traversed. For components with a long list of attributes this
would definitely be the more efficient approach.

24 CHAPTER 4. EXAMPLE PROGRAM

25

Appendix A

ANML Processor Library Interface
Quick Reference

This section contains a quick reference to the C++ anml manager member functions and the
associated functions used with the C anml c manager. The associated C functions are presented
below the C++ member functions in italics.

anml manager() Creates a new ANML manager.
anml c manager * init anml c manager(void)
anml manager(anml c manager *) Creates C++ manager copy of C manager.
anml manager(anml manager *) Creates copy of manager.
anml c manager * copy anml c manager(
const anml c manager *)
~anml manager() Deletes manager.
void delete anml c manager(anml c manager *)

Table A.1: Creating, Copying and Deleting ANML Managers (Section 3.2)

int process model file(const char *) Processes a model file.
int am process model file(anml c manager *, const char *)

Table A.2: Processing ANML Models (Section 3.3)

int write cur model(FILE *) Writes current model to file.
int am process model file(FILE *, anml c manager *)

Table A.3: Writing ANML Models (Section 3.4)

26 APPENDIX A. ANML PROCESSOR LIBRARY INTERFACE QUICK REFERENCE

int cur comp() Indicates if current component is not NULL.
int am cur comp(anml c manager *)
int next comp() Traverses to next component.
int am next comp(anml c manager *)
int prev comp() Traverses to previous component.
int am prev comp(anml c manager *)
int first sub comp() Traverses to first sub-component of current component.
int am first sub comp(anml c manager *) For use with ANML MANAGER FREEORDER traversal only.
int last sub comp() Traverses to last sub-component of current component.
int am last sub comp(anml c manager *) For use with ANML MANAGER FREEORDER traversal only.
int parent comp() Traverses to parent of current component.
int am parent comp(anml c manager *) For use with ANML MANAGER FREEORDER traversal only.
int reset first comp(int) Reset to first component.
int am reset first comp(anml c manager *, ANML MANAGER PREORDER/POSTORDER/FREEORDER
int) traversals possible.
int reset last comp(int) Reset to last component.
int am reset last comp(anml c manager *, ANML MANAGER PREORDER/POSTORDER/FREEORDER
int) traversals possible.
int lev reset first comp() Reset to first component on current level.
int am lev reset first comp(anml c manager *) For use with ANML MANAGER FREEORDER traversal only.
int lev reset last comp() Reset to last component on current level.
int am lev reset last comp(anml c manager *) For use with ANML MANAGER FREEORDER traversal only.
int comp find forward(const char *) Starting with the current component and moving
int am comp find forward(anml c manager *, forward, finds the first component that is an
const char *) instance of the input class.
int comp find backward(const char *) Starting with the current component and moving
int am comp find backward(anml c manager *, backward, finds the first component that is an
const char *) instance of the input class.
int lookup comp(const char *) Finds the component with an absolute identifier
int am lookup comp(anml c manager *, that matches the input identifier.
const char *) Traversal method is set to ANML MANAGER FREEORDER

Table A.4: Traversing Components (Section 3.5)

27

int cur atr() Indicates if current attribute is not NULL.
int am cur atr(anml c manager *)
int next atr() Traverses to next attribute.
int am next atr(anml c manager *)
int prev atr() Traverses to previous attribute.
int am prev atr(anml c manager *)
int first sub atr() Traverses to first sub-attribute of current attribute.
int am first sub atr(anml c manager *) For use with composite attributes only.
int last sub atr() Traverses to last sub-attribute of current attribute.
int am last sub atr(anml c manager *) For use with composites attributes only.
int parent atr() Traverses to parent of current attribute.
int am parent atr(anml c manager *)
int reset first atr() Reset to first attribute.
int am reset first atr(anml c manager *)
int reset last atr() Reset to last attribute.
int am reset last atr(anml c manager *)
int lev reset first atr() Reset to first attribute on current level.
int am lev reset first atr(anml c manager *) Intended for use with composite attributes.
int lev reset last atr() Reset to last attribute on current level.
int am lev reset last atr(anml c manager *) Intended for use with composite attributes.
int atr find forward(const char *) Starting with the current attribute and moving
int am atr find forward(anml c manager *, forward, finds the attribute with the
const char *) specified name.
int atr find backward(const char *) Starting with the current attribute and moving
int am atr find backward(anml c manager *, backward, finds the attribute with the
const char *) specified name.

Table A.5: Traversing Attributes of Current Component (Section 3.6)

int cur atr val() Indicates if current value is not NULL.
int am cur atr val(anml c manager *)
int next atr val() Traverses to next value.
int am next atr val(anml c manager *) For use with list attributes only.
int prev atr val() Traverses to previous value.
int am prev atr val(anml c manager *) For use with list attributes only.
int reset first atr val() Reset to first value.
int am reset first atr val(anml c manager *) For use with list attributes only.
int reset last atr val() Reset to last value.
int am reset last atr val(anml c manager *) For use with list attributes only.

Table A.6: Traversing Values of Current Attribute (Section 3.7)

anml c manager * c manager() Returns the C manager.

Table A.7: Accessing Manager Information (Section 3.8)

28 APPENDIX A. ANML PROCESSOR LIBRARY INTERFACE QUICK REFERENCE

int cur model name(char **) Retrieves name of current model.
int get am cur model name(anml c manager *,
char **)
int cur model schema name(char **) Retrieves name of schema used
int get am cur model schema name(anml c manager *, by current model.
char **)

Table A.8: Accessing Current Model Information (Section 3.9)

int cur comp id(char **) Retrieves level identifier of the
int get am cur comp id(anml c manager *, current component.
char **)
int cur comp abs id(char **) Retrieves absolute identifier of the
int get am cur comp abs id(anml c manager *, current component.
char **)
int cur comp name(char **) Retrieves name of the current
int get am cur comp name(anml c manager *, component.
char **)
int cur comp class(char **) Retrieves name of the class that the
int get am cur comp class(anml c manager *, current component is an instance of.
char **)
int cur comp app class(char **) Retrieves name of the application
int get am cur comp app class(anml c manager *, class of the class that the current
char **) component is an instance of.
int cur comp isa(const char *, int *) Indicates if the current component
int am cur comp isa(anml c manager *, is an instance of the specified class.
const char *, int *)

Table A.9: Accessing Current Component Information (Section 3.10)

int cur atr name(char **) Retrieves name of the current
int get am cur atr name(anml c manager *, attribute.
char **)
int cur atr composite name(char **) Retrieves composite name of the
int get am cur atr composite name(anml c manager *, current attribute.
char **)
int cur atr type(sch atr type *) Retrieves the type of the current
int get am cur atr type(anml c manager *, attribute.
sch atr type *)
int cur atr mod atr type(mod attribute type *) Retrieves the mod attribute type of
int get am cur atr mod atr type(anml c manager *, the current attribute.
mod attribute type *)
int conv cur atr to id list() Current attribute converted to list of
int am conv cur atr to id list(anml c manager *) identifiers. Attribute must be of id type.

Table A.10: Accessing Current Attribute Information (Section 3.11)

29

int cur atr val string(char **) Retrieves string value of current value.
int get am cur atr val string(anml c manager *,
char **)
int cur atr val integer(int *) Retrieves integer value of current value.
int get am cur atr val integer(anml c manager *, Value must be an integer.
int *)
int cur atr val real(double *) Retrieves real value of current value.
int get am cur atr val real(anml c manager *, Value must be a real number.
double *)
int cur atr val boolean(int *) Retrieves boolean value of current value.
int get am cur atr val boolean(anml c manager *, false = 0 and true = 1.
int *) Value must be a boolean.
int cur atr val abs id(char **) Retrieves absolute identifier of current value.
int get am cur atr val abs id(anml c manager *, Value must be an identifier.
char **)

Table A.11: Accessing Current Attribute Value Information (Section 3.12)

void set print disabled(int) Disables ANML print statements.
void set am print disabled(anml c manager *, int)
void set warnings disabled(int) Disables ANML warning messages.
void set am warnings disabled(anml c manager *, int)

Table A.12: Setting Manager Functionality (Section 3.13)

30 APPENDIX A. ANML PROCESSOR LIBRARY INTERFACE QUICK REFERENCE

31

Appendix B

Code for Example Program

This section gives the source code for net proc.C, the C++ example program described in Section 4.

/*
** This file is copyright (C) 2002 Telesim Group
** (University of Calgary)
**
** This program is distributed WITHOUT ANY WARRANTY; without even the
** implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
** PURPOSE. See the file LICENSE for more details.
**
*/

/*
* This is a program to demonstrate the use of ANML by another application.
* Using the anml_manager this program traverses and displays info on the
* different network components of an ANML model that use the NetSchema.
*/

#include <fstream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <new.h>
#include "anml_manager.h"

static void traverse_hosts(anml_manager *);
static void traverse_routers(anml_manager *);
static void traverse_p2p_links(anml_manager *);
static void traverse_lan_links(anml_manager *);

int
main(int argc, char * argv[])
{

anml_manager * manager = NULL;

32 APPENDIX B. CODE FOR EXAMPLE PROGRAM

int i = 0;
char * model_filename = NULL;

/* extract model filename to process from command line arguments */
for(i = 0; i < argc; ++i) {

if(strcmp(argv[i], "-model") == 0)
break;

}
++i;
if(i < argc) {
model_filename = argv[i];

}
else {
fprintf(stderr,"-model <filename> must be specified.\n");
exit(1);

}

/* create the anml_manager and process the model file */
manager = new anml_manager();
if((manager->process_model_file(model_filename)) !=

ANML_MANAGER_SUCCESS)
exit(1);

/* traverse and display information on the different model components */
traverse_hosts(manager);
traverse_routers(manager);
traverse_p2p_links(manager);
traverse_lan_links(manager);

/* clean up */
delete manager;

exit(0);
}

void
traverse_hosts(anml_manager * manager)
{/* Traverses and displays information on all components that are instances

* of the class Host */

char * abs_id = NULL;
int buffer_size = 0;
char * lan_link_abs_id = NULL;

fprintf(stdout, "Here are the Hosts:\n");
fprintf(stdout, "-------------------\n\n");

33

manager->reset_first_comp(ANML_MANAGER_PREORDER);

while(manager->comp_find_forward("Host") == ANML_MANAGER_SUCCESS) {
manager->cur_comp__abs_id(&abs_id);
fprintf(stdout, "%s\n", abs_id);

manager->reset_first_atr();
if(manager->atr_find_forward("buffer_size") != ANML_MANAGER_SUCCESS) {

fprintf(stderr, "Failed to find ’buffer_size’ attribute.\n");
exit(1);

}
manager->cur_atr_val__integer(&buffer_size);
fprintf(stdout, " buffer_size: %d Bytes\n", buffer_size);

manager->reset_first_atr();
if(manager->atr_find_forward("lan_link") == ANML_MANAGER_SUCCESS) {

manager->cur_atr_val__abs_id(&lan_link_abs_id);
fprintf(stdout, " lan_link: %s\n", lan_link_abs_id);

}

fprintf(stdout, "\n");
manager->next_comp();

}
fprintf(stdout, "\n");

}

void
traverse_routers(anml_manager * manager)
{/* Traverses and displays information on all components that are instances

* of the class Router */

char * abs_id = NULL;
double proc_delay = 0.0;
int buffer_size = 0;
char * lan_link_abs_id = NULL;

fprintf(stdout, "Here are the Routers:\n");
fprintf(stdout, "---------------------\n\n");

manager->reset_first_comp(ANML_MANAGER_PREORDER);

while(manager->comp_find_forward("Router") == ANML_MANAGER_SUCCESS) {
manager->cur_comp__abs_id(&abs_id);
fprintf(stdout, "%s\n", abs_id);

manager->reset_first_atr();

34 APPENDIX B. CODE FOR EXAMPLE PROGRAM

if(manager->atr_find_forward("proc_delay") != ANML_MANAGER_SUCCESS) {
fprintf(stderr, "Failed to find ’proc_delay’ attribute.\n");
exit(1);

}
manager->cur_atr_val__real(&proc_delay);
fprintf(stdout, " proc_delay: %.2e s\n", proc_delay);

manager->reset_first_atr();
if(manager->atr_find_forward("buffer_size") != ANML_MANAGER_SUCCESS) {

fprintf(stderr, "Failed to find ’buffer_size’ attribute.\n");
exit(1);

}
manager->cur_atr_val__integer(&buffer_size);
fprintf(stdout, " buffer_size: %d Bytes\n", buffer_size);

manager->reset_first_atr();
if(manager->atr_find_forward("lan_links") == ANML_MANAGER_SUCCESS) {

manager->conv_cur_atr_to_id_list();
manager->reset_first_atr_val();
fprintf(stdout, " lan_links: ");
while(manager->cur_atr_val() == ANML_MANAGER_SUCCESS) {

manager->cur_atr_val__abs_id(&lan_link_abs_id);
fprintf(stdout, "%s ", lan_link_abs_id);
manager->next_atr_val();

}
fprintf(stdout, "\n");

}

fprintf(stdout, "\n");

manager->next_comp();
}
fprintf(stdout, "\n");

}

void
traverse_p2p_links(anml_manager * manager)
{/* Traverses and displays information on all components that are instances

* of the class P2P_Link */

char * abs_id = NULL;
char * nodeA_abs_id = NULL;
char * nodeB_abs_id = NULL;
double delay = 0.0;
double rate = 0.0;
int mtu = 0;

35

fprintf(stdout, "Here are the P2P Links:\n");
fprintf(stdout, "-----------------------\n\n");

manager->reset_first_comp(ANML_MANAGER_PREORDER);

while(manager->comp_find_forward("P2P_Link") == ANML_MANAGER_SUCCESS) {
manager->cur_comp__abs_id(&abs_id);
fprintf(stdout, "%s\n", abs_id);

manager->reset_first_atr();
if(manager->atr_find_forward("nodeA") != ANML_MANAGER_SUCCESS) {

fprintf(stderr, "Failed to find ’nodeA’ attribute.\n");
exit(1);

}
manager->cur_atr_val__abs_id(&nodeA_abs_id);
fprintf(stdout, " nodeA: %s\n", nodeA_abs_id);

manager->reset_first_atr();
if(manager->atr_find_forward("nodeB") != ANML_MANAGER_SUCCESS) {

fprintf(stderr, "Failed to find ’nodeB’ attribute.\n");
exit(1);

}
manager->cur_atr_val__abs_id(&nodeB_abs_id);
fprintf(stdout, " nodeB: %s\n", nodeB_abs_id);

manager->reset_first_atr();
if(manager->atr_find_forward("rate") != ANML_MANAGER_SUCCESS) {

fprintf(stderr, "Failed to find ’rate’ attribute.\n");
exit(1);

}
manager->cur_atr_val__real(&rate);
fprintf(stdout, " rate: %.2f Mbps\n", rate);

manager->reset_first_atr();
if(manager->atr_find_forward("delay") != ANML_MANAGER_SUCCESS) {

fprintf(stderr, "Failed to find ’delay’ attribute.\n");
exit(1);

}
manager->cur_atr_val__real(&delay);
fprintf(stdout, " delay: %.2e s\n", delay);

manager->reset_first_atr();
if(manager->atr_find_forward("mtu") != ANML_MANAGER_SUCCESS) {

fprintf(stderr, "Failed to find ’mtu’ attribute.\n");
exit(1);

}
manager->cur_atr_val__integer(&mtu);

36 APPENDIX B. CODE FOR EXAMPLE PROGRAM

fprintf(stdout, " mtu: %d Bytes\n", mtu);

fprintf(stdout, "\n");
manager->next_comp();

}
fprintf(stdout, "\n");

}

void
traverse_lan_links(anml_manager * manager)
{/* Traverses and displays information on all components that are instances

* of the class LAN_Link */

char * abs_id = NULL;
double rate = 0.0;
double delay = 0.0;
int mtu = 0;

fprintf(stdout, "Here are the LAN Links:\n");
fprintf(stdout, "-----------------------\n\n");

manager->reset_first_comp(ANML_MANAGER_PREORDER);

while(manager->comp_find_forward("LAN_Link") == ANML_MANAGER_SUCCESS) {
manager->cur_comp__abs_id(&abs_id);
fprintf(stdout, "%s\n", abs_id);

manager->reset_first_atr();
if(manager->atr_find_forward("rate") != ANML_MANAGER_SUCCESS) {

fprintf(stderr, "Failed to find ’rate’ attribute.\n");
exit(1);

}
manager->cur_atr_val__real(&rate);
fprintf(stdout, " rate: %.2f Mbps\n", rate);

manager->reset_first_atr();
if(manager->atr_find_forward("delay") != ANML_MANAGER_SUCCESS) {

fprintf(stderr, "Failed to find ’delay’ attribute.\n");
exit(1);

}
manager->cur_atr_val__real(&delay);
fprintf(stdout, " delay: %.2e s\n", delay);

manager->reset_first_atr();
if(manager->atr_find_forward("mtu") != ANML_MANAGER_SUCCESS) {

fprintf(stderr, "Failed to find ’mtu’ attribute.\n");
exit(1);

37

}
manager->cur_atr_val__integer(&mtu);
fprintf(stdout, " mtu: %d Bytes\n", mtu);

fprintf(stdout, "\n");
manager->next_comp();

}
fprintf(stdout, "\n");

}

